Bois

De fablabo
Révision de 14 janvier 2022 à 16:22 par Glennln (discussion | contributions)

(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)
Aller à : navigation, rechercher

Matériaux de construction écologique et très efficace.

projets utilisants du Bois

Cadredeserigraphie.jpeg

Cadre Sérigraphie
...

Photo 2024-06-14 10-29-51.jpg

Création de mobilier avec les élèves du collège Gutenberg
Réalisation d'assises sur des bacs en béton dans la cour du collège Gutenberg

12-1.jpg

Création de mobilier avec les élèves du collège Salvador Allende
Réalisation d'une table pour la cour du collège Salvador Allende à Rezé

Tuto inkscape decoupe.jpg

Inkscape pour la fabrication numérique
Utiliser Inkscape pour les machines de découpe à commande numérique
… autres résultats

Généralités

Les bois sont caractérisés dans la famille des composites, ces propriétés mécaniques sont généralement anisotropes (c'est à dire qu'elles varient en fonction de l'orientation du matériau), on notera que beaucoup de bois sont fibreux, et donc les propriétés en suivant le sens de la fibres sont meilleures.

On classe les bois par essences (chène, oukoumé, peuplier ....), chaque essence possède une anatomie différente (agencement des molécules) c'est cet agencement comme dans tout composite qui est responsable de propriétés mécaniques diverses..

Composition et impact carbone

La composition moléculaire des bois reste semblable, notamment sur la cellulose.
Il est constitué de 50% de carbone, 43% d'oxygène, 6% d'hydrogène, 1% d'azote. Tout son carbone provient du CO2 dans l'air, c'est pourquoi son utilisation stocke du carbone.

En prenant en compte le dégagement de CO2 par l'utilisation des outils lors de ça transformation, le bois a toujours un impact positif. (de l'ordre de 800 kg de CO2 par m³, contre 1000 kg/m³ si l'on ne fait que le planter)

Énergétiquement, l'énergie par mètre cube pour produire les bois est de 80 MJ/m^3 On notera que pour le bambou seulement c'est plutôt 30 MJ/m^3

Durabilité

Le bois en tant que matériau biodégradable, est sujet à la question de sa durabilité.

Sa décomposition provient essentiellement du classe de bactérie et champignons que l'on retrouve principalement dans l'humus forestier.

Aussi la prise en compte de paramètres lors des constructions et le choix des conditions d'utilisation (lieu, usage ...) conditionne énormément la durée de vie du bois. Avec un peu de connaissance des bois on pourra augmenter leur durée de vie sans traitement. Certains bâtiments sont vieux de 14 siècles et tiennent encore.

On pourra avoir des bois ignifugés, généralement le traitement consiste à imprégner des sels hydrosolubles sous vide, ce qui a pour effet de réduire la durabilité en extérieur des bois.

Vieillissement

Le bois vieillit, naturellement, ici on listera les causes et les conséquences liées à cela.

  • Le rayonnement UV cause:
    • Avec une présence d'oxygène et la réaction photochimique, un jaunissement voir brunissement de la surface.
    • Et un blanchiment du bois, jusqu'à voir la couleur blanche de la cellulose.
  • L'érosion (pluie, eau, réaction photochimique), le bois a tendance à fendre et on perd la couleur d'origine.
  • Avec des températures de 25°C et une humidité d'environs 30%. La surface du bois à tendance à devenir gris-bleu, gris-noir.

Globalement on pourra se fier aux classes d'emplois qui définissent le lieu d'usage du bois.

  1. Intérieur, non soumis à l’humidité (<20%)
  2. Abrité, peu être soumis à l'humidité mais occasionnellement (>20%)
  3. Le bois est au-dessus du sol, et exposé aux pluies
  4. Le bois est en contact avec le sol, et exposé aux pluies
  5. Le bois est immergé dans de l'eau salée

On trouvera le détail en fonction des essences Ici

Compatibilités avec les métaux

En effet les bois, sont des composées généralement acides (ph 3 à 6), ce qui a une influence sur les colles, résines polymères, et la corrosion des métaux (notamment pour les pH < 4.4)

  • Les classes 1,2 et 3: sont compatibles avec tous les métaux.
  • Les classes 3 et 4: sont incompatibles avec le Zinc et les aluminiums. Quelques précautions sont à prendre pour les aciers galvanisés et les inox.

Les chênes et les châtaigniers sont particulièrement incompatibles avec tout sauf les aciers standards.

Humidité

On observe une relation directe entre la température sèche extérieure, le taux d'humidité extérieur et le taux d'humidité du bois.

Voir l'abaque Ici

Séchage

Le séchage prend généralement plusieurs jours, pour une diminution de 40% du taux d'humidité un bois rapide à l'adaptation à l'humidité peut sécher en 3 jours et un lent peu durer une 20aine de jours.

Rétractabilité

Le bois a la propriété de se rétracter tangentiellement ou radialement aux fibres. Ces variation sont de l'ordre de 0.10 à 0.40% de la taille pour chaque pourcentage d'humidité que le bois gagne.

Ainsi si on suit l'abaque pour un changement de 30% de taux d'humidité du bois (variation de l'humidité ambiante de 0 à 100%), on peut avoir un bois qui se rétracte ou se gonfle de 3 à 12% de sa taille initiale.

À savoir que le gonflement se produit lors d'une augmentation du taux d'humidité (absorption d'eau) et la rétractation lors d'une diminution du taux d'humidité.

Propriétés mécaniques

Le bois ayant un comportement complexe.

Ces propriétés mécaniques peuvent varier en fonction du taux d'humidité, mais en dépassant les 30% les propriétés restent stables.

Caractéristiques

Ce sont des valeurs physiques qui caractérisent le matériau, elles sont calculées via des essais, elles servent à comparer facilement les différents matériaux.

On retrouvera plein d'infos sur le site du CNDB

Irrégularités

L'impact vient du fait que les fibres ne soient plus continues dans la longueur, ce qui provoque une perte de propriété mécanique ou une fragilité locale qui est imputable pour toute la structure.

Les bois possèdent 3 types d'irrégularités.

  • Nœuds : Les nœuds sont le résultat de la formation d'une branche dans l’arbre, la fibre perd localement les propriétés mécaniques sur la longueur.
  • Fentes : Dû à une chute du bois ou au retrait du bois durant le séchage, étant plus ou moins profondes.
  • Irrégularités de fils : Liées à la croissance du bois, qui provoque des mini-irrégularités dans les fibres du bois.
  • Altérations : Dûes aux insectes, aux champignons, à des agents chimiques, comme les autres irrégularités.
Caractéristiques qualitatives

Ici on définira les caractéristiques qui s'expriment avec des mots, la comparaison est donc très relative.

  • Dureté: Plusieurs catégories existent pour les bois de tendre à très dur, c'est la capacité pour le bois à résister à la pénétration (force) par un objet. On notera que les bois durs sont plus facilement usinables à la fraiseuse que les bois tendres.
  • Durabilité: Capacité de durer dans le temps du bois, cela dépend beaucoup des champignons, maladies ...
  • Stabilité dimensionnelle: Capacité pour le bois de conserver ses dimensions/géométries en fonction des différences d'humidité, température, pression...
  • Aptitude au séchage: Capacité pour le bois de sécher rapidement. Donc de faire baisser son taux d'humidité.
  • Aptitude au façonnage: Capacité pour le bois à être travaillé par l'homme (usinage ...)
  • Adaptation à l'humidité ambiante: Capacité à absorber l'humidité extérieure plus ou moins rapidement.
Caractéristiques physiques

Ici on définira les caractéristiques qui s'expriment par des valeurs chiffrées avec des unités.

  • Densité: Définit la masse volumique, donc le poids par unité de volume, pour le bois on la mesure avec un taux d'humidité à 12% (bois plutôt sec). L'eau est à 1g/cm^3, les bois sont généralement entre 0.45 et 0.85 g/cm^3.
  • Retrait: En lien avec la Stabilité dimensionnelle, il définit le rétrécissement du bois (en %) en fonction de son taux d'humidité.
  • Module d'élasticité en flexion: On l'obtient par un essai de flexion Il caractérise la capacité pour un matériaux à se tordre (en flexion) en fonction de l’effort qu'on lui applique. Dans l'idée c'est comme un ressort, plus le module d'élasticité est grand plus il agit comme un ressort épais, et inversement. Il caractérise le domaine élastique, si le matériau est souple ou rigide
  • Contrainte de rupture: On l'obtient aussi par des essais de rupture, il définit la pression (ou contrainte en terme technique) nécessaire pour la rupture du matériau, ces caractéristiques sont propres au matériau, et au type de sollicitation (traction, flexion, torsion ...). On l'exprime en N/mm², ou encore en MPa (méga pascals), 1 N/mm² = 1 MPa = 10 bars.
On le distingue de l'effort (force en N) nécessaire pour rompre un objet, celui ci dépend fondamentalement de sa géométrie, et c'est là tout l’enjeu de l’ingénieur mécanique de prévoir ces efforts via les surfaces sur lequel les contraintes s'appliquent.
  • Résistance au choc: autrement appelée résilience, cela caractérise la capacité au matériau à absorber l'énergie d'un choc, on l'exprime pour les bois en Nm/cm², ce qui peut être compris comme une énergie absorbée par unité de surface.
Comparatifs des bois utilisés au fablab

Ces valeurs ont pour but de comparer les différentes essences, elles ne sont pas valables pour le calcul de structures, cela vient simplement que les propriétés peuvent varier du simple au double en fonction des très nombreux paramètres physiques dont dépendent le bois. Ici on trouve des valeurs plutôt moyennes.

Essence Dureté Densité moyenne à 12%(g/cm^3) Module d'élasticité en flexion (MPa) Contrainte de rupture à la traction suivant la longueur (MPa) Contrainte de rupture à la compression (MPa) Contrainte de rupture à la flexion (MPa) Résistance au choc (MPa) Adaptation à l'humidité Classe d'emploi sans traitement Origine
Bouleau Mi-dur 0.66 14800 135 51 132 8.7 Moyenne 1,2 France
Châtaignier Mi-dur 0.59 8500 128 46 71 5.7 Lente 1,2,3,4 France
Chêne Mi-dur 0.71 12500 100 58 97 6.2 Lente 1,2,3,4 France
Épicéa Tendre 0.46 11000 85 45 71 4.5 Rapide 1,2 France
Érable Mi-dur 0.64 10500 115 54 110 6.4 Lente 1,2 Europe
Frêne Mi-dur 0.7 12900 145 51 113 7.7 Lente 1,2,~3 Europe
Hêtre Mi-dur 0.71 14300 117 58 107 10 Moyenne 1,2,3 France
Mélèze Tendre 0.6 12500 101 53 93 6.2 Rapide 1,2,3 Europe
Oukoumé Tendre 0.44 7800 61 36 87 2 Rapide 1,2 Gabon
Peuplier Tendre 0.44 8800 72 33 65 4.3 Rapide 1,2 Europe
Pin Marine Tendre 0.54 8800 86 39 80 3.7 Rapide 1,2,3 France
Sapin Tendre 0.46 12300 87 46 68 5 Rapide 1.2 France
Bambou** Mi-dur 0.65 ou 1.2 14000 240 80 100 6.4 Lente 1,2,3,4 Partout
OSB* Autres 0.55-0.65 3500-5600 9-12 15-18 18-30 1 Rapide 1.2 France/Suisse
Particules Autres 0.55-0.65 2000-2500 7-10 10-12 11-15 0.7 Rapide 1,~2 France/Suisse
MDF Autres 0.75 2500-3000 10-20 5-10 35-45 0.5 Rapide 1 France/Suisse
HDF Autres 0.85 3000-3500 25-45 25-35 35-60 0.8 Rapide 1 France/Suisse

.*OSB: Les info sont pour un sens longitudinal, de plus elles dépendent beaucoup de sa qualité (normes), le dernier fournisseur français étant Kronofrance.

.**Bambou: Le bambou n'étant pas un bois, mais une herbe, néanmoins vu ses caractéristiques mécaniques il est comparable aux autres. Il est majoritairement produit en Asie, mais on peut en trouver en France, notamment via la Bambouseraie d'Anduze
Sa densité est de 0.65g/cm³ pour les bambous entiers en rondin, et de 1.2g/cm³ pour des lames de bambou.

Les bois présents en France le sont aussi en Europe.

Les formes

Massif

Les massifs sont la forme la plus proche de l'arbre, puisque c'est directement un morceau de ce dernier, on fera néanmoins attention, que tout les massifs ont des fibres, ainsi l'orientation qui en découle peut jouer un rôle dans la conception des objets.

Contreplaqué

L'idée étant d'assembler des plaques fines (les plis) de massif, avec de la colle pour gagner en épaisseur, aussi on garde les propriétés mécaniques du bois sur la longueur et la largeur, mais sur l'épaisseur on est partagés entre celle du bois et celle de la colle.

Sources

Page Wiki

Un document sur les caractéristiques du contreplaqué finlandais

Page Wiki d'un composant de la résine (ou colle)

Agglomérés

Ici on va prendre des très gros copeaux de bois (1 à 10cm de long) que l'on va presser ensemble et enduire de colle. Cette forme est peu coûteuse, résistante au feu (généralement M1 à partir de 12mm d'épaisseur).
Le problème c'est qu'elle s'effrite facilement, notamment du fait que les propriétés mécaniques sont plus proches de la colle que du bois. (en comparaison on est proches d'une forme composite fibre aléatoire avec matrice, que d'une forme en fibre longue comme le CP ou le massif)

Parmi la résine l'OSB contient généralement entre 0.008 et 0.030 % de formaldéhyde dans tout le panneau. Ou existe sans formaldéhyde.

Les prix vont de 4 à 12€/m² pour des épaisseurs de 12 à 22mm. Et de 20 à 40€/m² pour du ignifugé.

Sources

Page Wiki de l'OSB.

Site technique sur l'OSB

Les caractéristiques suivant les normes pour l'OSB

Medium/MDF

Comme pour l’aggloméré on va prendre des copeaux de bois, ici extrêmement petit (du dixième de mm au micron donc de la poussière de bois) que l'on va aussi presser et enduire de colle, ici on a une majorité de colle.
Sur le plan mécanique c'est une forme plutôt homogène et isotrope, donc les propriétés mécaniques sont les mêmes partout et dans toutes les directions, ce sont principalement les propriétés de la colle.

Il a un inconvénient majeur, c'est ça composition de poussière de bois, qui sont cancérigènes !! Aussi l'utilisation d'outil de coupe type fraiseuse, scie... est interdit. L'utilisation à la découpe laser avec l'aspiration des poussières à l’extérieur semble correcte.

Les prix vont de 3 à 30€/m² pour des épaisseurs de 3 à 50mm.

Particules

Ici on a exactement du medium mais avec des copeaux plutôt gros, de l'ordre du mm, c'est un compromis entre l'OBS et le medium. Sur le plan mécanique, c'est plutôt homogène, presque isotrope, néanmoins les propriétés sont particulièrement faibles, puisque que globalement c'est moins résistant que le médium et l'OSB. Il a l'avantage premier de n'être pas cher comme pour l'OSB mais sa version ignifugée est la moins chère du marché.

Les ordres de prix sont de 5 à 10€/m² pour des épaisseurs de 10 à 30mm, et 10 à 15€/m² pour la version ignifugée.

Sur le plan sécurité on est dans le même cas que l'OSB.

Assemblage

Source TI mise en oeuvre p10-15

Hygiène et sécurité

Pendant les usinages les opérateurs doivent être protégés des inhalations de poussières de bois.

Les poussières de tout les bois sont cancérogènes, les cancers ont une chance de se déclarer 20 ans après l'exposition.

Fiche INRS sur les poussières de bois

Point de vue toxicologie site canadien.

Résistance au feu

Tout les bois sont des combustibles, cependant la combustion est différente, pour caractériser cela on utilise des indices de M1 à M5 qui définissent le temps que le matériau met pour se consumer, les indices varient en fonction du type de bois, de sa forme, de l'épaisseur dans le cas d'une plaque et du volume dans le cas d'un objet plus complexe.

M1 étant les matériaux qui se consument le plus lentement, il sont dit ininflammables, et M5 le plus rapidement, dit facilement inflammable.

Sources

Guide simple du CNDB
Un tableur des différentes propriétés mécaniques du bois en fonctions des essences.
Voici une thèse sur la mécanique du bois pour ceux qui veulent.

Pour le bambou (même si le bambou est une herbe et pas un arbre): Site scientifique Site d'un distributeur qui parle que ses pratiques Site d'un passionné Des techniques d'assemblages

Divers

50 raccords en bois à la CNC : https://www.flickr.com/photos/satiredun/15868308421/sizes/o/

Fournisseurs

Dispano fournisseur de plaques à Nantes