FraiseuseCNC/restauration

Révision de 1 février 2013 à 19:02 par LaurentM (discussion | contributions)

Sommaire

Projet: améliorer la fraiseuse

  • monter un shield GRBL pour avoir des drivers + puissants modèle GrblShield de SynthEthos
  • coller les radiateur sur les controleurs TI
  • bien fixer toutes les fins de course
  • mettre à jour GRBL pour essayer d'avoir des fins de course en fonction des emplacements libres sur le shield Uno
  • fignolages mécaniques

check chaine logicielle

références

2013 01 28

flashage de l'Arduino DueMilanove avec la version 0.8c 9600bauds de GRBL

$ cd /dossier/des/sources/grbl

on modifie les sources de Makefile à la ligne 33. On remplace:

PROGRAMMER ?= -c avrisp2 -P USB

par:

PROGRAMMER = -c stk500v1 -P /dev/ttyUSB0 -b57600

Puis:

$ make; make flash


Pas sûr de ces instructions de http://dank.bengler.no/-/page/show/5471_gettinggrbl?ref=checkpoint qui ont l'air orientées windoze

$ avrdude -C/usr/share/arduino/hardware/tools/avrdude.conf -pm328p -cstk500v1 -P/dev/ttyUSB0 --b9600 -D -Ugrbl.hex

Comment connecter les contacteurs de fin de course

Un dessin vaut mieux que de longs discours:

SchFin 2CourseGrblShield.jpeg

Les résistances doivent etre entre 3.3k et 20k

Source : http://www.shapeoko.com/forum/viewtopic.php?f=5&t=361&start=10#p3050


C'est là que le fun commence

$ stty raw ignbrk 9600 < /dev/ttyUSB0
$ ( cat <&3 & cat >&3; kill %%) 3<>/dev/ttyUSB0
Grbl 0.8c ['$' for help]
$
$$ (view Grbl settings)
$# (view # parameters)
$G (view parser state)
$N (view startup blocks)
$x=value (save Grbl setting)
$Nx=line (save startup block)
$C (check gcode mode)
$X (kill alarm lock)
$H (run homing cycle)
~ (cycle start)
! (feed hold)
? (current status)
ctrl-x (reset Grbl)
ok
G21
ok
G91
ok
G1 X10 F200
ok
G1 X-10 F400
ok
$$
$0=7.273 (x, step/mm)
$1=7.273 (y, step/mm)
$2=400.000 (z, step/mm)
$3=30 (step pulse, usec)
$4=200.000 (default feed, mm/min)
$5=600.000 (default seek, mm/min)
$6=0 (step port invert mask, int:00000000)
$7=25 (step idle delay, msec)
$8=0.008 (acceleration, mm/sec^2)
$9=300.000 (junction deviation, mm)
$10=0.100 (arc, mm/segment)
$11=25 (n-arc correction, int)
$12=3 (n-decimals, int)
$13=0 (report inches, bool)
$14=1 (auto start, bool)
$15=0 (invert step enable, bool)
$16=0 (hard limits, bool)
$17=0 (homing cycle, bool)
$18=0 (homing dir invert mask, int:00000000)
$19=25.000 (homing feed, mm/min)
$20=250.000 (homing seek, mm/min)
$21=100 (homing debounce, msec)
$22=1.000 (homing pull-off, mm)
ok
$0=70
ok
G1 X10 F400
ok

2013 01 30

Entraînement de la courroie axe Y

Les axes de renvoi des courroies de l'axe Y (profondeur) restaient fixe. En fait la partie interne du rotor des roulements frotte contre la surface support des roulements. Un chambrage dans la surface support permet de limiter le frottement mais il faut quand même éviter de trop serrer les axes.

2013 01 31

Re-câblage des moteurs pas à pas

Le câblage des moteurs a été fait pour les trois moteurs qui n'étaient pas branchés sur les bons axes. Face à la machine :

  • axe X : de gauche à droite
  • axe Y : du proche au lointain
  • axe Z : de bas en haut

Câblage des fins de course

D'abord, on n'a rien compris. En fait les câbles reliés aux sorties "normalement fermé" des swithes étaient tous connectés entre eux.

Ceci corrigé, nous avons re-etiquetés les cables de fin de course en se référant aux axes et aux sens précisés juste avant.

Finalement, ça ne marche toujours pas... Pour l'instant, les capteurs de fin de course sont déconnectés.

Calibrage des moteurs

Résultats pour les réglages d'usine (step/8)

  • axe X = 14.7 step/mm (axe inversé)
  • axe Y = 14.2 step/mm
  • axe Z = 1570 step/mm (axe inversé)

2013 02 01

Essais

Essais de vitesse en fonction de : vitesse max, accélération, microstepping (step/8 ; step/4 ; step/2)

Résultats :

  • accélération < 250 mm/s²
  • vitesse max (axe X et Y) < 8000 mm/min
  • vitesse max (axe Z) <= 200 mm/min

microstepping

À l'aide de bridges sur le GrblShield,on peut sélectionner la précision de chaque moteur. La carte est capable de contrôler chaque moteur au huitième de pas, quart de pas ou demi-pas. Dans chaque cas, il faut corriger le nombre d'impulsion par millimètres (Exemple : 14,2 step/mm au huitième de pas donne 7,1 step/mm au quart de pas).

Les performances en terme de vitesse et d'accélération ne semblent pas être affectées par le choix du microstepping. De même, l'utilisation de pas entier n'a pas permis d'utiliser des vitesses plus élevé pour l'axe Z, qui broute toujours au dessus de 200 mm/min.