E-poignée : Différence entre versions

De fablabo
Aller à : navigation, rechercher
(Page créée avec « {{Projet |status=Prototype |description=La e-poignée se substitue à la poignée du couvercle de la casserole |contributeurs=Régis , Philippe Bonnet |ingrédients= Ma... »)
 
(Atelier)
 
(120 révisions intermédiaires par 3 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
 
{{Projet
 
{{Projet
 
|status=Prototype
 
|status=Prototype
|description=La e-poignée se substitue à la poignée du couvercle de la casserole 
+
|status_pub=Publié
|contributeurs=Régis , Philippe Bonnet  
+
|image=E-p_a.JPG
|ingrédients= Matériaux pour l'impression 3D , PLA  
+
|description=Une poignée de substitution
 +
|license=CC-by-sa-3.0
 +
|contributeurs=LERUSTE REGIS , Philippe Bonnet
 +
|inspiration=Création d'un objet
 +
|ingrédients=Matériaux pour l'impression 3D , PLA
 +
|machines=Imprimante3D,
 +
|url=[http://fablabo.net/wiki/SCAO SCAO]
 
}}
 
}}
 +
[[image:E-p_a.JPG |thumb|center|upright=3]]
 +
==Objet==
 +
 +
===e-poignée===
 +
Cette version de la e-poignée transmet, la température mesurée par le thermocouple, à l'ordinateur par l'intermédiaire d'une connectique USB 2.0. Elle est un objet connecté et intelligent.
 +
===Article Wikipédia===
 +
L'objet de ce "wiki" est d'expliquer et de mettre à disposition, au fur et à mesure de leurs disponibilités, tous les fichiers et informations nécessaires à la fabrication des sous-ensembles de cette e-poignée.
 +
==La team créative==
 +
La team créative, de la e-poignée conçue par [[Utilisateur:LERUSTE REGIS | Régis LERUSTE]], est composée de :
 +
 +
*[[Utilisateur:Maëlle_Vimont | Maëlle Vimont]] pour l'animation de la plate-forme C
 +
 +
*[[Utilisateur:Florelle | Florelle PACOT]]Florelle PACOT pour le conseil design du logo
 +
 +
*[[Utilisateur:Laurent B | Laurent BERTHELOT]] pour le conseil à propos de tout sujet et en particulier de l'impression 3D
 +
 +
*Jean-Pierre pour le conseil en impression 3D
 +
 +
*[[Utilisateur:Cedric | Cédric DOUTRIAUX]] pour le conseil "wiki"
 +
 +
*[[Utilisateur:ThomasB | Thomas BERNARDI]] pour la [http://fablabo.net/wiki/CEPI protection des travaux avec des licences libres]
 +
 +
*[[Utilisateur:Philippe Bonnet | Philippe Bonnet]] pour le conseil en informatique
 +
 +
*[[Utilisateur:Baptiste LABAT | Baptiste LABAT]] pour le conseil Arduino nano
 +
 +
*Pierre-Antoine RAULT pour SCAO et développement d’une communauté open-source et radio PRUN
 +
 +
*[[Utilisateur:Nicolas Jouanin | Nicolas JOUANIN]] pour l'échange d'idées au sujet de nos projets respectifs.
 +
*Olivier Marais pour les [http://fablabo.net/wiki/Les_recettes_d%27Olivier recettes de cuisine] et pour l'[http://fablabo.net/wiki/20170409091838 usinage de l'entretoise de la e-poignée].
 +
 +
==Historique==
 +
l'historique de la e-poignée USB se résume par quelques faits marquants :
 +
*L'inauguration de la plateforme C est annoncée dans Ouest France en octobre 2013, l'article parle des machines à commandes numériques et en particulier des imprimantes 3D accessibles lors des open-ateliers.
 +
*Je me précipite à Nantes le mardi suivant avec l'idée de remplacer l'horrible prototype bidouillé (voir photo ci-dessous) à la va vite par un objet fonctionnel et design.
 +
[[image:proto_initial.JPG |thumb|center|upright=3]]
 +
*La première pièce imprimée est baptisée "cylindre plate-forme"
 +
*La seconde est baptisée poignée et elle fait l'objet d'essai de peinture
 +
*Le nom de e-poignée fait son apparition au second trimestre 2014
 +
*La base prend la forme d'une sphère
 +
*Elle se compose de 2 pièces : la jupe et le top
 +
*La température du couvercle de la casserole ramollie le PLA
 +
*L'isolateur est créé
 +
*Sur la jupe, après pas mal de recherche avec Laurent, on écrit e-poignée
 +
*Le top se modifie et devient plus fonctionnel, la dimension du tore est ajustée à la morphologie de la main
 +
*Une nouvelle pièce est créée, le logo
 +
*En attendant mieux (incrustation ou relief), le logo est collé
 +
*La hauteur de la jupe est ajustée
 +
*Un premier prototype voit le jour fin 2014
 +
 +
==Contraintes==
 +
Les contraintes de la e-poignée USB sont réunies dans le tableau ci-dessous. La colonne ''Résultat'' est renseignée au fur et à mesure des évaluations.
 +
{| class="wikitable alternance centre"
 +
|+ Contraintes
 +
|-
 +
|
 +
! scope="col" | Contrainte
 +
! scope="col" | Observation
 +
! scope="col" | Résultat
 +
|-
 +
! scope="row" | 1
 +
| Montage/démontage sur le couvercle
 +
| Simplicité
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 2
 +
| Fixation M5 sur le couvercle
 +
| Usage sur tout type de couvercle avec poignée démontable
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 3
 +
| Application du  thermocouple sur le couvercle
 +
| Contact intime et fiable
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 4
 +
| Fixation du circuit imprimé
 +
| <center>[http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf Ici]</center>
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 5
 +
| Accessibilité du bornier de connexion du thermocouple
 +
| <center>[http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf Ici]</center>
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 6
 +
| Visibilité de l’embase USB pour faciliter la connexion du câble
 +
| <center>[http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf Ici]</center>
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 7
 +
| Reconduire la fonctionnalité de manutention de la poignée
 +
|
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 8
 +
| Incrustation du logo
 +
|
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 9
 +
| Incrustation du sigle USB
 +
|
 +
| <center>NOK</center>
 +
|-
 +
! scope="row" | 10
 +
| Peinture (couleur du logo : vert, orange, gris) / Vernis
 +
|
 +
| <center>NOK</center>
 +
|-
 +
! scope="row" | 11
 +
| Tenue en température
 +
| Eviter le contact entre le PLA et le couvercle
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 12
 +
| Assurer la fonction complémentaire de milieu de table
 +
|
 +
| <center>OK</center>
 +
|-
 +
! scope="row" | 13
 +
| Etanchéité au ruissellement
 +
| Vernis ?
 +
| <center>NOK</center>
 +
|-
 +
! scope="row" | 14
 +
| Assemblage facile
 +
| Pas d'outillage spécifique
 +
| <center>NOK</center>
 +
|}
 +
La fonction de milieu de table est illustrée par la photo ci-dessous :
 +
[[image:milieu_table.JPG |thumb|center|upright=4]]
 +
Les liens ci-après permettent d'accéder directement à l'[http://fablabo.net/wiki/E-poign%C3%A9e#Evaluation_-_Proposition_d.27am.C3.A9lioration évaluation et propositions d'amélioration] et leur [http://fablabo.net/wiki/E-poign%C3%A9e#Am.C3.A9liorations réalisation].
 +
==Description==
 +
Le rendu de la vue d'ensemble (fig 1) généré par Openscad met en évidence son aspect et son concept d'assemblage.
 +
[[fichier:xl.png|center]]
 +
Le rendu de la vue éclatée (fig 2) de la e-poignée permet de matérialiser ses différents éléments. Chaque élément possède un repère numérique qui apparaît entre crochets [], par exemple, la jupe [8].
 +
[[fichier:Assemblag.png|center|'''Rendu de la vue éclatée de la e-poignées USB''']]
 +
Les éléments essentiels sont :
 +
*une entretoise [http://fr.wikipedia.org/wiki/Filetage_m%C3%A9trique M5] [15] qui permet la fixation de la e-poignée sur le couvercle [18] de la casserole.
 +
*Un [http://www.gotronic.fr/art-thermocouple-k-tp01-8041.htm thermocouple] [16] appliqué sur l'entretoise [http://fr.wikipedia.org/wiki/Filetage_m%C3%A9trique M5] [15]. Il effectue la mesure de la température sur le couvercle [18].
 +
*Un [http://www.phidgets.com/products.php?product_id=1051 module électronique] [6] qui reçoit en entrée le [http://www.gotronic.fr/art-thermocouple-k-tp01-8041.htm thermocouple] [16], traite le signal reçu et met périodiquement à disposition sur une embase USB la mesure de la température.
 +
*Un câble [17] mini USB réalise la connexion avec l'ordinateur.
 +
 +
La e-poignée USB est constitué de 3 pièces fabriquées en [http://www.plateforme-c.org/ plateforme C] sur l'une des [http://fablabo.net/wiki/Imprimante3D imprimantes 3D Asimov] (en vert et de haut en bas) :
 +
*Le logo [1],
 +
*Le top [4],
 +
*La jupe [8] (elle est coupée pour mettre en évidence l'assemblage des pièces).
 +
Elle est complétée :
 +
*D'un jeu de visserie (en gris : vis, entretoises, rondelles, écrous),
 +
*D'un module [6] de mesure de la température situé au dessus de la jupe [8] (en orange),
 +
*D'un isolateur [10] (en orange) situé au dessous de la jupe [8].
 +
Une nomenclature permet de répertorier les éléments de la e-poignée USB, la première colonne indique le niveau de décomposition :
 +
{| class="wikitable alternance centre"
 +
|+ Nomenclature de la e-poignée
 +
|-
 +
|
 +
! scope="col" | Désignation
 +
! scope="col" | Fournisseur
 +
! scope="col" | Référence
 +
! scope="col" | Repère
 +
! scope="col" | Qte
 +
|-
 +
! scope="row" | •
 +
| Logo
 +
| <center>[http://www.plateforme-c.org/ Plateforme C]</center>
 +
| <center>[[Média:logo.scad]]</center>
 +
 +
| <center>1</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | •
 +
| Top
 +
| <center>[http://www.plateforme-c.org/ Plateforme C]</center>
 +
| <center>[[Média:top.scad]]</center>
 +
| <center>4</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | •
 +
| Jupe
 +
| <center>[http://www.plateforme-c.org/ Plateforme C]</center>
 +
| <center>[[Média:jupe.scad]]</center>
 +
| <center>8</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | •
 +
| Module équipé de mesure de la température
 +
| <center>Phidgets</center>
 +
| <center>[http://www.phidgets.com/products.php?product_id=1051 1051]</center>
 +
| <center>6 & 17</center>
 +
| <center> 1</center>
 +
|-
 +
! scope="row" | •
 +
| Isolateur thermique
 +
| <center></center>
 +
| <center></center>
 +
| <center>10</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | ••
 +
| Platine d'essais
 +
| <center>[http://www.conrad.fr/ Conrad]</center>
 +
| <center>[http://www.conrad.fr/ce/fr/product/529580/Platine-dessais-pastilles-75x100x15mm-WR-Rademacher-VK-C-811-2?queryFromSuggest=true 529580 - 62]</center>
 +
| <center></center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | ••
 +
| Prototypage selon plan
 +
| <center>Atelier St MOLF</center>
 +
| <center>[[Média:isolateur.png]]</center>
 +
| <center></center>
 +
| <center>1</center>
 +
 +
|-
 +
! scope="row" | •
 +
| Thermocouple K - TP01
 +
| <center>Gotronic</center>
 +
| <center>[http://www.gotronic.fr/art-thermocouple-k-tp01-8041.htm 14460]</center>
 +
| <center>16</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | •
 +
| Jeu de visserie
 +
|
 +
|
 +
|
 +
| <center>1</center>
 +
|-
 +
! scope="row" | ••
 +
| Vis M3 - TCBL POZI M3X6 INOX A2 DIN 7985
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageTB.php#ChoixProduit TCBLZ03/006A2]</center>
 +
| <center>2</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Rondelle éventail denture extérieure AZ 0 3 INOX A2 DIN 6798 A
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageRON.php#ChoixProduit RONAZ03A2]</center>
 +
| <center>3</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Entretoise hexagonale M3X10 SIX PANS 5.5 FEM/FEM LAITON NICKELE
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageENTBIL.php#ChoixProduit ENTH03/010FFLAINIS]</center>
 +
| <center>5</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Rondelle éventail denture extérieure AZ 0 3 INOX A2 DIN 6798 A
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageRON.php#ChoixProduit RONAZ03A2]</center>
 +
| <center>7</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Entretoise M3
 +
| <center>HPC</center>
 +
| <center>[http://shop.hpceurope.com/fr/produit.asp?prid=1369&lie=0&nav=3 MPB3-5/B]</center>
 +
| <center>9</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Rondelle éventail denture extérieure AZ 0 3 INOX A2 DIN 6798 A
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageRON.php#ChoixProduit RONAZ03A2]</center>
 +
| <center>11</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Vis M3 - TCBL POZI M3X5 INOX A2 DIN 7985
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageTB.php#ChoixProduit TCBLZ03/005A2]</center>
 +
| <center>12</center>
 +
| <center>4</center>
 +
|-
 +
! scope="row" | ••
 +
| Ecrou autofreiné SNEP H100 M5 Z.BLANC
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageECR.php#ChoixProduit ECRSNEH100/005ZN]</center>
 +
| <center>13</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | ••
 +
| Rondelle éventail denture extérieure AZ 0 5 INOX A2 DIN 6798 A
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageRON.php#ChoixProduit RONAZ05A2]</center>
 +
| <center>14</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" | ••
 +
| Entretoise hexagonale M5X16 MALE-FEMELLE Z.BLANC
 +
| <center>[http://www.bricovis.fr/ BRICOVIS]</center>
 +
| <center>[http://www.bricovis.fr/2014/pageENTBIL.php#ChoixProduit ENTH05/016MFZN]</center>
 +
| <center>15</center>
 +
| <center>1</center>
 +
|-
 +
! scope="row" |
 +
| Couvercle de la casserole
 +
|
 +
|
 +
| <center>18</center>
 +
| <center>1</center>
 +
|}
 +
==Prototypage==
 +
Le prototypage de la e-poignée USB fait appel à l'approvisionnement de matériels standards, aux activités d'atelier et à l'impression 3D.
 +
===Approvisionnement===
 +
L'approvisionnement des matériels standards :
 +
*La visserie chez [http://www.bricovis.fr/ BRICOVIS] et [http://shop.hpceurope.com/fr/produit.asp?prid=1369&lie=0&nav=3 HPC].
 +
*Le module de mesure de la température est approvisionné au Canada, il s'agit d'un [http://www.phidgets.com/products.php?product_id=1051 module électronique] [6] qui reçoit en entrée le [http://www.gotronic.fr/art-thermocouple-k-tp01-8041.htm thermocouple] [16] et fourni en sortie sur une embase USB la température mesurée.
 +
*La platine d'essai chez [http://www.conrad.fr/ Conrad]
 +
Compte tenu du coût élevé de ce module, une étude basée sur l'utilisation d'un microcontrôleur est envisagée. Elle fait l'objet d'un projet séparé.
 +
===Atelier===
 +
Les activités d'atelier concernent :
 +
*la finition des pièces fabriquées sur imprimante 3D,
 +
*la fabrication de l'isolateur [10] (voir la nomenclature),
 +
*l'assemblage des pièces selon la figure 2.
 +
====fabrication de l'isolateur====
 +
 +
L'objet de l'isolateur est de réaliser une isolation thermique entre l'entretoise [15] et la jupe [8].
 +
 +
La vue de dessus modélisée sous LibreCAD correspond à :
 +
[[fichier:isolateur.png|center|]]
 +
Il est fabriqué à partir d'une [http://www.conrad.fr/ce/fr/product/529580/Platine-dessais-pastilles-75x100x15mm-WR-Rademacher-VK-C-811-2?ref=searchDetail platine d'essai à pastilles en bakélite] (voir la nomenclature).
 +
 +
===Impression 3D===
 +
L'impression 3D se réfère aux travaux de recherche de l'[https://www.design.ulaval.ca/impression3d école de design de Laval].
 +
 +
La modélisation 3D et la fabrication, des pièces principales de la e-poignée, sont réalisées en [http://www.plateforme-c.org/ Plateforme C] au fablab de Nantes en suivant les directives et conseils d'[http://fablabo.net/wiki/Imprimer_en_3D_%C3%A0_Plateforme_C/ imprimer en 3D à plateforme C]. Elles utilisent des logiciels [http://fr.wikipedia.org/wiki/Open_source open source], pour :
 +
*la modèlisation 3D, [http://www.openscad.org/ Openscad] qui génère un [http://en.wikipedia.org/wiki/STL_%28file_format%29 fichier stl]).
 +
*la fabrication sur [http://fr.wikipedia.org/wiki/Impression_tridimensionnelle imprimante 3D] :
 +
**[http://slic3r.org/ Slic 3r] qui translate un modèle digital 3D ([http://en.wikipedia.org/wiki/STL_%28file_format%29 fichier stl]) en instructions interprétables par une imprimante 3D. Il découpe le modèle en tranches horizontales et génère les chemins adéquats pour remplir ces tranches. [http://slic3r.org/ Slic 3r] est configuré à partir du fichier config-withendstop[1].ini, sans doute une variante du [[fichier : config-withendstop.ini]]. Il génère le [http://fr.wikipedia.org/wiki/Programmation_de_commande_num%C3%A9rique G-CODE].
 +
**[http://www.pronterface.com/ Pronterface] qui pilote l'[http://fr.wikipedia.org/wiki/Impression_tridimensionnelle imprimante 3D] à partir du [http://fr.wikipedia.org/wiki/Programmation_de_commande_num%C3%A9rique G-CODE].
 +
====Dimensions====
 +
Les dimensions de la e-poignée USB tiennent compte de la morphologie de la main et des [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf dimensions] propres du module de mesure de la température . Les dimensions communes aux trois pièces (jupe [8], top [4] et logo [1]) sont consignées dans le fichier [http://www.openscad.org/ Openscad] [[Media : dim1.scad]], les [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf dimensions] du CI [6] sont exprimées en pouces et converties en mm, un extrait de ce fichier est donné ci-dessous :
 +
<code lang='javascript'>CC=25.4;//Coefficient de Conversion (pouce -> mm)
 +
L1=1.6*CC;//longueur du CI
 +
L2=1.3*CC;//entre axes des trous de fixation du CI
 +
l1=1.2*CC;//largeur du CI
 +
l2=0.9*CC;//entre axes des trous de fixation du CI
 +
r=(0.125*CC)/2;//rayon de percage des trous de fixation du CI
 +
e=0.1*CC;//epaisseur des parois
 +
R=37.15;//Rayon du cercle de revolution du tore</code>
 +
====La jupe====
 +
La jupe [8] habille la partie inférieure de la e-poignée. Le logiciel [http://www.openscad.org/ Openscad] après compilation du code contenu dans le [[fichier:jupe.scad]] génère le rendu en 3D correspondant à la figure ci-dessous :
 +
[[fichier:jupe.png|center]]
 +
Elle a la forme d'un parallélépipède (cube dans la terminologie d'[http://www.openscad.org/ Openscad]) dont les angles sont arrondis, elle est constituée de 4 flancs latéraux et d'une partie supérieure appelée plateforme. Cette plateforme est percée de 4 trous qui permettent, au dessus, la fixation du [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6], et au dessous, la fixation de l'isolateur [10] qui a les mêmes dimensions que le [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6]. Pour tenir compte de la contrainte thermique due à la proximité de la jupe [8] et du couvercle [18], Il est nécessaire d'éviter leur contact, mieux, ménager un petit espace entre eux. En outre, cet espace constitue l'entrée d'un flux d'air ambiant. Ce flux d'air sort par une ouverture (aération) prévue sur la plateforme. Cette aération naturelle permet de maîtriser la température sous la jupe [8] et donc celle du [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6]. La hauteur de la jupe hj est ajustée en conséquence. En complément, une goulotte permet le passage du câble du thermocouple.
 +
 +
La vue de dessous de la jupe [8] permet de mettre en évidence
 +
[[fichier:jupe_vdd.png|center|]]
 +
ses longueurs (intérieure et extérieure) et ses largeurs (intérieure et extérieure). Elles correspondent a celles du [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6] ('''L'''ongueur '''L'''1, '''l'''argeur '''l'''1) auxquelles viennent s'ajouter un multiple de l'épaisseur e des parois, soit :
 +
*'''L'''ongueur extérieure = '''L'''1+4*e, '''L'''ongueur intérieure = '''L'''1+2*e,
 +
*'''l'''argeur extérieure = '''l'''1+4*e, '''l'''argeur intérieure = '''l'''1+2*e.
 +
Le code utilise principalement les instructions "rotate", "difference", "union" et "minkowski".
 +
*L'instruction "rotate" réalise une rotation de 180 degrés nécessaire a l'impression 3D.
 +
*L'instruction "différence" va permettre de retirer de la matière aux endroits adéquats.
 +
*L'instruction "union" va permettre de grouper le grand cube et la goulotte.
 +
*L'instruction "minkowski" effectue la somme d'un parallélépipède (cube) et d'un cylindre, ce cylindre va arrondir les angles du cube, la somme "minkowski" est calculée selon les 3 axes (x, y et z) et prend en compte les dimensions du cube et du cylindre.
 +
Dans ce contexte :
 +
*l'instruction "minkowski" permet les constructions successives d'un "grand cube" et d'un "petit cube".
 +
*l'instruction "difference" génère la jupe [8] par soustraction du "grand cube" et du "petit cube" ,
 +
Pour tenir compte de la somme effectuée par l'instruction "minkowski",les dimensions sont :
 +
*selon les axes x et y, :
 +
**le "grand cube", dimensionne son cube aux dimensions ('''L'''1, '''l'''1) du [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6], et le rayon de son cylindre à 2*e,
 +
**le "petit cube", dimensionne son cube aux dimensions ('''L'''1, '''l'''1) du [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6], et le rayon de son cylindre à e.
 +
*selon l'axe z, pour obtenir la hauteur hj, il faut dimensionner la hauteur du cube et celle du cylindre à hj/2.
 +
Pour quantifier les dimensions énoncées ci-dessus,
 +
il faut additionner aux dimensions ('''L'''1 ou '''l'''1) du [http://www.phidgets.com/documentation/Phidgets/1051_2_Mechanical.pdf CI] [6] 2 fois celle du rayon du cylindre (celui situé sur la partie gauche et celui situé sur la partie droite de la jupe [8]), soit :
 +
*'''L'''ongueur extérieure = 1,6+4*0,1 = 2 pouces, '''L'''ongueur intérieure = 1,6+2*0,1 = 1,8 pouces,
 +
*'''l'''argeur extérieure = 1,2+4*0,1 = 1,6 pouces, '''l'''argeur intérieure = 1,2+2*0,1 = 1,4 pouces.
 +
 +
Les instructions du code sont les suivantes :
 +
<code lang='javascript'>//Construction de la jupe
 +
difference(){
 +
 +
//Contruction du grand cube et de sa goulotte :
 +
union(){
 +
minkowski(){
 +
cube(size = [L1,l1,hj/2], center = true);
 +
cylinder(h = hj/2, r = 2*e, center = true);
 +
}
 +
translate([-((L1/2)+(3*e/2)),0,0])cylinder(h = hj, r = 5*r, center = true); //Goulotte
 +
}
 +
//Construction du petit cube :
 +
translate([0,0,-e])minkowski(){
 +
cube(size = [L1,l1,hj/2], center = true);
 +
cylinder(h = hj/2, r = e, center = true);
 +
}
 +
 +
//Percage des trous de fixation :
 +
translate([L2/2,l2/2,hj/2])cylinder(h = hj/2, r = r, center = true);
 +
translate([-L2/2,-l2/2,hj/2])cylinder(h = hj/2, r = r, center = true);
 +
translate([-L2/2,l2/2,hj/2])cylinder(h = hj/2, r = r, center = true);
 +
translate([L2/2,-l2/2,hj/2])cylinder(h = hj/2, r = r, center = true);
 +
 +
//Ouverture pour le passage du cable du thermocouple dans la goulotte :
 +
minkowski(){
 +
translate([-((L1/2)+(1.5*e)),0,0])cube(size = [3*r,r/2,1.1*hj], center = true);
 +
cylinder(h = hj/2, r = e, center = true);
 +
}
 +
 +
//Ouverture pour ventilation
 +
translate([0,0,hj/2])cylinder(h = hj/2, r = L2/2, center = true);
 +
}
 +
}
 +
</code>
 +
====Le top====
 +
Le logiciel [http://www.openscad.org/ Openscad] après compilation du code contenu dans le [[fichier:top.scad]] génère le rendu en 3D du top [4] correspondant à :
 +
[[fichier:top.png|center]]
 +
Parmi les 3 pièces de la e-poignée, le top [4] a pour objet de reconduire la fonctionnalité traditionnelle de la poignée du couvercle de la casserole, c'est à dire, de permettre sa manutention. Une fonctionnalité complémentaire est attendue, c'est celle dite de "milieu de table", le couvercle équipé de la e-poignée, après une rotation de 180 degrés, reçoit  la  casserole en constituant ainsi la fonctionnalité de milieu de table (voir photo).
 +
 +
N.B. : cette fonctionnalité est envisageable que si la conception, de la casserole et de son couvercle, le prévoit.
 +
 +
La modélisation du top [4] sous [http://www.openscad.org/ Openscad] commence par l'initialisation des paramètres. Le code :<code>
 +
//Initialisation des parametres
 +
//$fn=100;
 +
include <dim1.scad>
 +
Rt=5.5;//Rayon du cercle de la section du tore
 +
coef=0.75;// Coef translation du cylindre de raccordement
 +
</code>
 +
La vue de dessus du top [4] permet de mettre en évidence ses dimensions.
 +
[[fichier:top_vdd.png|center|500px]]
 +
Les 3 parties constituantes sont, le tore, un ensemble de 4 cylindres verticaux et un ensemble de 4 cylindres horizontaux.
 +
Le '''tore''' est la partie fonctionnelle telle que décrite ci-dessus, ses dimensions doivent tenir compte de la morphologie de la main. Le diamètre extérieur du tore ('''Ø<sub>tore</sub>''') est d'environ 85 mm, pour le calculer :
 +
 +
<center>'''Ø<sub>tore</sub> = 2*(R + Rt) = 2*(37.15 + 5.5) = 85.3mm'''</center>
 +
 +
Par rapport à une main féminine, cette dimension est optimale.
 +
Le principe utilisé pour modéliser le tore est celui de l’[http://en.wikibooks.org/wiki/OpenSCAD_User_Manual/2D_to_3D_Extrusion#Rotate_Extrude/ extrusion] qui convertit un objet 2D en un objet 3D. [http://www.openscad.org/ Openscad] utilise une instruction composée de 3 parties :
 +
* '''"rotate_extrude convexity = 10"''', qui réalise l'extrusion circulaire,
 +
*'''"translate"''' qui exprime le rayon du cercle de révolution
 +
*et '''"circle"''' qui exprime le rayon du cercle de la section du tore.
 +
 +
La fenêtre USB est réalisée par l'instruction '''"difference"''' entre le tore et un cube.
 +
 +
Le code :<code>
 +
difference(){
 +
rotate_extrude(convexity = 10)
 +
translate([R, 0, 0])
 +
circle(r = Rt); //rayon du cercle de la section du tore
 +
translate([R,0,0])cube(size = [15,12,8*e], center = true);//fenetre USB
 +
}
 +
</code>
 +
L’ensemble des 4 '''Cylindres verticaux''' (Cv) est conçu pour répondre à 2 fonctionnalités, '''la première''', en référence à la vue éclatée de la e-poignée (fig 2), la fixation du top [4], au dessus du CI [6], à l'aide de 4 entretoises filetées [5] et de 4 vis [2] équipées de rondelles [3], '''la deuxième''', le maintien par simple emboîtement du logo [1].
 +
La modélisation de chaque Cylindre vertical fait appel à un module Cv qui reçoit les coordonnées x et y. Le code :<code>
 +
//module Cylindre vertical (Cv)
 +
rc=7.5;//rayon du cylindre
 +
module Cv(x,y){
 +
difference(){
 +
translate([x,y,0])cylinder(h=2*Rt,r=rc,center=true);
 +
translate([x,y,e/2])cylinder(h=1.01*(2*Rt-e),r=rc-e,center=true);//lamage
 +
translate([x,y,0])cylinder(h=20,r=r,center=true);//trou
 +
}
 +
}
 +
</code>
 +
Le module Cv est appelé pour modéliser chacun des 4 cylindres, accompagné des coordonnées x et y égales aux entre-axes des trous de fixation du CI [6], soit L2/2 et l2/2 (fig 6), exprimés selon les 4 combinaisons des signes + et -. Le code :<code>
 +
//Construction des 4 cylindres verticaux
 +
Cv(L2/2,l2/2);
 +
Cv(L2/2,-l2/2);
 +
Cv(-L2/2,-l2/2);
 +
Cv(-L2/2,l2/2);
 +
</code>
 +
 +
L’ensemble des 4 '''Cylindres horizontaux''' (Ch) relie le tore à l'ensemble des 4 cylindres verticaux.
 +
La modélisation de chaque cylindre horizontal fait appel à un module Ch qui reçoit les coordonnées x et y du centre du cylindre ainsi que la valeur d'un angle de rotation. Un paramètre "coef" fixé à 0.75 permet d'ajuster la position de ce centre. Le positionnement du cylindre est montré ci-dessous :
 +
[[fichier:top_detail.png|center|650px]]
 +
Le code :<code>
 +
//Module Cylindre horizontal de raccordement
 +
module Ch(x,y,z){
 +
translate([x*coef,y*coef,0])rotate([90,0,z])cylinder(h=10,r=Rt/1.1,center=true);
 +
}
 +
</code>
 +
Le module Ch est appelé pour modéliser chacun des 4 cylindres, accompagné des coordonnées du centre du cylindre, L2 et l2,  exprimés selon les 4 combinaisons des signes + et -. Le code est : <code>
 +
//Construction des 4 cylindres horizontaux de raccordement
 +
Ch(-L2,l2,atan (L2/l2));
 +
Ch(L2,l2,-atan (L2/l2));
 +
Ch(-L2,-l2,-atan (L2/l2));
 +
Ch(L2,-l2,atan (L2/l2));
 +
</code>
 +
Pour vérifier le positionnement du centre de chaque cylindre horizontal (fig 7) :
 +
<center>'''x*coef = 1.3*0.75 = 0.975'''
 +
'''y*coef = 0.9*0.75 = 0.675'''
 +
'''Angle de rotation = atan (L2/l2) = atan(1.444) = 55.304 degrés'''</center>
 +
====Le logo====
 +
Le logiciel [http://www.openscad.org/ Openscad] après compilation du code contenu dans le [[fichier:logo.scad]] génère le rendu en 3D du logo [1] correspondant à la figure ci-dessous :
 +
[[fichier:logo.png|center|]]
 +
L'objet de la pièce "logo" est de réserver un emplacement ou le logo Quiet cook
 +
peut être matérialisé. En complément, cette pièce cache les vis de fixation.
 +
 +
Il est composé d'une plate-forme cylindrique équipée :
 +
*d'une fenêtre qui permet la visibilité de l'embase USB du CI [6],
 +
*de 4 plots conçus pour assurer l'assemblage par emboîtement du logo sur le top [4].
 +
 +
L'emboîtement est réalisé grâce a la forme conique des 4 plots qui s'introduisent dans les 4 lamages des cylindres verticaux du top [4].
 +
 +
Chaque plot est évidé par une sphère pour accueillir la tête bombée de la vis de fixation du top [4].
 +
 +
Le code :
 +
<code>module plot (x,y){
 +
r1=4.9;//Rayon du cone inferieur
 +
r2=4.95;//Rayon du cone superieur
 +
rs=3.5;//Rayon de la sphere
 +
difference(){
 +
translate([x,y,-e])cylinder(e,r1=r1,r2=r2,center=true);
 +
translate([x,y,-e])sphere(3.5,center=true);
 +
}
 +
}
 +
 +
//Initialisation des parametres
 +
include <dim1.scad>
 +
Rl=R-12;//Rayon du logo
 +
//$fn=100;
 +
 +
//Construction du logo
 +
rotate([180,0,0]){
 +
 +
//Construction de la plateforme
 +
difference(){
 +
//Construction du cylindre plateforme
 +
translate([0,0,0])cylinder(e,r=Rl,center=true);
 +
//Decoupe de la fenêtre USB
 +
translate([3+L2/2,0,0])minkowski(){cube(size = [8,6,1.1*e], center = true);
 +
cylinder(r=3,h=e);
 +
}
 +
}
 +
 +
//Construction des 4 plots
 +
plot(L2/2,l2/2);//Plot 1
 +
plot(-L2/2,l2/2);//Plot 2
 +
plot(-L2/2,-l2/2);//Plot 3
 +
plot(L2/2,-l2/2);//Plot 4
 +
 +
}</code>
 +
 +
==Evaluation - Proposition d'amélioration==
 +
L’apéro-projet du mardi 17 février 2015 organisé par Julien et Maëlle a été l’occasion de la présentation de la e-poignée suivie de l’analyse du tableau des contraintes, de l’appréciation des résultats et de la suggestion des axes d’amélioration. En regard de chaque contrainte, les participants, Laurent en particulier, donnent leur avis :
 +
#Montage/démontage sur le couvercle [18] : un participant expérimente l’opération, le résultat est satisfaisant. Hors réunion, une amélioration est envisagée. Elle consiste en l'usinage de l’entretoise [15] pour augmenter la profondeur de pénétration de la tige filetée du couvercle [18]. La contrainte est levée.
 +
#Fixation M5 sur le couvercle [18]: d'un couvercle à l'autre, le pas de vis, dans le cas présent l'entretoise [15] M5,  peut être différent, M4 par exemple. Ou bien, selon un standard anglais, en pouces plutôt qu'en millimètres. Dans ces cas, il convient d'adapter l'entretoise et si sa hauteur est différente d'ajuster la hauteur de la jupe [8]. La contrainte est levée (filetage M5 uniquement).
 +
#Application du thermocouple [16] sur l'entretoise [15] : le thermocouple [16] est introduit à l'aide d'un trou de 1 mm de diamètre percé au préalable sur l'un des pans de l'entretoise [15] hexagonale. Une goutte de super glue permet de coller l'ensemble. En outre, une gaine thermorétractable enveloppe le thermocouple [16] et son câble autour de l'entretoise [16]. La contrainte est levée.
 +
#Fixation du circuit imprimé [6] : fixation correcte. La contrainte est levée.
 +
#Accessibilité du bornier de connexion du thermocouple [16] : l'accessibilité est correcte, les 2 fils du thermocouple [16] sont connectés au bornier par serrage des vis à l'aide d'un tournevis d'horloger. La contrainte est levée.
 +
#Visibilité de l’embase USB pour faciliter la connexion du câble : des fenêtres ont été aménagées sur le top [4] et le logo [1]. La visibilité est correcte. La contrainte est levée.
 +
#Reconduire la fonctionnalité de manutention de la poignée : cette fonctionnalité est correcte. La contrainte est levée.
 +
#Incrustation du logo [1] : non réalisée. La contrainte est maintenue.
 +
#Incrustation du sigle USB : non réalisée. La contrainte est maintenue.
 +
#Peinture (couleur du logo : vert, orange, gris) / Vernis : non réalisée. Un essai de peinture est réalisé sur l'une des pièces qui n'existe plus dans le prototype actuel. Une peinture d'apprêt ainsi qu'environ 10 couches successives n'ont pas suffit à couvrir correctement la pièce. La pièce a été coupée en 2 morceaux. La photo ci-dessous montre l'une des 2 moitiés. Le PLA a absorbé comme une éponge la peinture ! L'usage au quotidien de la e-poignée a mis en évidence la nécessité de la protéger pour s'assurer d'une bonne hygiène alimentaire. Amélioration : modification des paramètres dans Slic3r, en vue d'obtenir une couche externe plus épaisse et plus dense. La protection de la pièce par un vernis s'avère une solution envisageable. La contrainte est maintenue.[[image:peinture.JPG |thumb|center|upright=4]]
 +
#Tenue en température : l'isolateur [10] en bakélite constitue une isolation thermique satisfaisante. La contrainte est levée.
 +
#Assurer la fonction complémentaire de milieu de table (voir photo) : le sujet n'a pas été traité car la photo n'était pas accessible sur le wiki. Cette fonction nécessite une excellente stabilité du couvercle quand celui-ci est retourné. Actuellement, dans cette configuration, la stabilité n'est pas bonne car l'ensemble repose sur le logo [1]. La contrainte est maintenue.
 +
#Étanchéité au ruissellement : Cette contrainte est exclusive aux composants électroniques. Après cuisson, le nettoyage à l'eau du couvercle est nécessaire, démonter à chaque fois la e-poignée est fastidieux, le mode de cuisson en basse température utilisé ne projette pas de matière grasse. Toutefois, une condensation est présente. Avec beaucoup d'attention, un simple rinçage de l'intérieur du couvercle est suffisant. Amélioration : imprégnation ou vernis des composants électroniques. La contrainte est maintenue.
 +
#Assemblage facile : les 4 vis de fixation de l'isolateur [10] sont difficiles d'accès et nécessite un tournevis spécifique. Amélioration : revoir la fixation de l'isolateur [10]. La contrainte est maintenue.
 +
==Améliorations==
 +
[[image:E-p_a.JPG |thumb|center|upright=3]]
 +
La photo ci-dessus montre la e-poignée réalisée par [http://www.lna-proto.com/ LNA Prototypes]. Cette réalisation intégre une partie des [http://fablabo.net/wiki/E-poign%C3%A9e#Evaluation_-_Proposition_d.27am.C3.A9lioration propositions d'améliorations]. Elle permet de lever une partie des [http://fablabo.net/wiki/E-poign%C3%A9e#Contraintes contraintes].
 +
#Rappel : montage/démontage sur le couvercle [18] : un participant expérimente l’opération, le résultat est satisfaisant. Hors réunion, une amélioration est envisagée. Elle consiste en  [http://fablabo.net/wiki/20170409091838 l'usinage de l'entretoise] M5 [15], selon la figure [[Image:Ent-M5.pdf | thumb | upright=1 | Usinage de l'entretoise M5]] . La contrainte est levée.
 +
#Rappel : fixation M5 sur le couvercle [18]: la contrainte est levée.
 +
#Rappel : accessibilité du bornier de connexion du thermocouple [16] : la contrainte est levée.
 +
#Rappel : visibilité de l’embase USB pour faciliter la connexion du câble : la contrainte est levée.
 +
#Rappel : incrustation du logo [1] : le logo est incrusté (voir photo). La contrainte est levée.
 +
#Rappel : incrustation du sigle USB : non réalisée. La contrainte est maintenue.
 +
#Rappel : peinture (couleur du logo : vert, orange, gris) / Vernis :  La contrainte est levée.
 +
#Rappel : tenue en température : l'isolateur [10] en bakélite constitue une isolation thermique satisfaisante. La contrainte est levée.
 +
#Rappel : assurer la fonction complémentaire de milieu de table (voir photo) : le sujet n'a pas été traité car la photo n'était pas accessible sur le wiki. Cette fonction nécessite une excellente stabilité du couvercle quand celui-ci est retourné. Actuellement, dans cette configuration, la stabilité n'est pas bonne car l'ensemble repose sur le logo [1]. La contrainte est maintenue.
 +
#Rappel : étanchéité au ruissellement : Cette contrainte est exclusive aux composants électroniques. Après cuisson, le nettoyage à l'eau du couvercle est nécessaire, démonter à chaque fois la e-poignée est fastidieux, le mode de cuisson en basse température utilisé ne projette pas de matière grasse. Toutefois, une condensation est présente. Avec beaucoup d'attention, un simple rinçage de l'intérieur du couvercle est suffisant. Amélioration : imprégnation ou vernis des composants électroniques. La contrainte est maintenue.
 +
#Rappel : assemblage facile : les 4 vis de fixation de l'isolateur [10] sont difficiles d'accès et nécessite un tournevis spécifique. Amélioration : revoir la fixation de l'isolateur [10]. La contrainte est maintenue.

Version actuelle en date du 20 août 2017 à 14:50


Une poignée de substitution

E-p a.JPG

Contributeur·ice·s

Statut du projet

Prototype

Statut de la publication

Publié

License

CC-by-sa-3.0

Inspiration

Création d'un objet

Fichiers source

Machines

Lien




E-p a.JPG

Objet

e-poignée

Cette version de la e-poignée transmet, la température mesurée par le thermocouple, à l'ordinateur par l'intermédiaire d'une connectique USB 2.0. Elle est un objet connecté et intelligent.

Article Wikipédia

L'objet de ce "wiki" est d'expliquer et de mettre à disposition, au fur et à mesure de leurs disponibilités, tous les fichiers et informations nécessaires à la fabrication des sous-ensembles de cette e-poignée.

La team créative

La team créative, de la e-poignée conçue par Régis LERUSTE, est composée de :

  • Laurent BERTHELOT pour le conseil à propos de tout sujet et en particulier de l'impression 3D
  • Jean-Pierre pour le conseil en impression 3D
  • Pierre-Antoine RAULT pour SCAO et développement d’une communauté open-source et radio PRUN

Historique

l'historique de la e-poignée USB se résume par quelques faits marquants :

  • L'inauguration de la plateforme C est annoncée dans Ouest France en octobre 2013, l'article parle des machines à commandes numériques et en particulier des imprimantes 3D accessibles lors des open-ateliers.
  • Je me précipite à Nantes le mardi suivant avec l'idée de remplacer l'horrible prototype bidouillé (voir photo ci-dessous) à la va vite par un objet fonctionnel et design.
Proto initial.JPG
  • La première pièce imprimée est baptisée "cylindre plate-forme"
  • La seconde est baptisée poignée et elle fait l'objet d'essai de peinture
  • Le nom de e-poignée fait son apparition au second trimestre 2014
  • La base prend la forme d'une sphère
  • Elle se compose de 2 pièces : la jupe et le top
  • La température du couvercle de la casserole ramollie le PLA
  • L'isolateur est créé
  • Sur la jupe, après pas mal de recherche avec Laurent, on écrit e-poignée
  • Le top se modifie et devient plus fonctionnel, la dimension du tore est ajustée à la morphologie de la main
  • Une nouvelle pièce est créée, le logo
  • En attendant mieux (incrustation ou relief), le logo est collé
  • La hauteur de la jupe est ajustée
  • Un premier prototype voit le jour fin 2014

Contraintes

Les contraintes de la e-poignée USB sont réunies dans le tableau ci-dessous. La colonne Résultat est renseignée au fur et à mesure des évaluations.

Contraintes
Contrainte Observation Résultat
1 Montage/démontage sur le couvercle Simplicité
OK
2 Fixation M5 sur le couvercle Usage sur tout type de couvercle avec poignée démontable
OK
3 Application du thermocouple sur le couvercle Contact intime et fiable
OK
4 Fixation du circuit imprimé
Ici
OK
5 Accessibilité du bornier de connexion du thermocouple
Ici
OK
6 Visibilité de l’embase USB pour faciliter la connexion du câble
Ici
OK
7 Reconduire la fonctionnalité de manutention de la poignée
OK
8 Incrustation du logo
OK
9 Incrustation du sigle USB
NOK
10 Peinture (couleur du logo : vert, orange, gris) / Vernis
NOK
11 Tenue en température Eviter le contact entre le PLA et le couvercle
OK
12 Assurer la fonction complémentaire de milieu de table
OK
13 Etanchéité au ruissellement Vernis ?
NOK
14 Assemblage facile Pas d'outillage spécifique
NOK

La fonction de milieu de table est illustrée par la photo ci-dessous :

Milieu table.JPG

Les liens ci-après permettent d'accéder directement à l'évaluation et propositions d'amélioration et leur réalisation.

Description

Le rendu de la vue d'ensemble (fig 1) généré par Openscad met en évidence son aspect et son concept d'assemblage.

Xl.png

Le rendu de la vue éclatée (fig 2) de la e-poignée permet de matérialiser ses différents éléments. Chaque élément possède un repère numérique qui apparaît entre crochets [], par exemple, la jupe [8].

Rendu de la vue éclatée de la e-poignées USB

Les éléments essentiels sont :

  • une entretoise M5 [15] qui permet la fixation de la e-poignée sur le couvercle [18] de la casserole.
  • Un thermocouple [16] appliqué sur l'entretoise M5 [15]. Il effectue la mesure de la température sur le couvercle [18].
  • Un module électronique [6] qui reçoit en entrée le thermocouple [16], traite le signal reçu et met périodiquement à disposition sur une embase USB la mesure de la température.
  • Un câble [17] mini USB réalise la connexion avec l'ordinateur.

La e-poignée USB est constitué de 3 pièces fabriquées en plateforme C sur l'une des imprimantes 3D Asimov (en vert et de haut en bas) :

  • Le logo [1],
  • Le top [4],
  • La jupe [8] (elle est coupée pour mettre en évidence l'assemblage des pièces).

Elle est complétée :

  • D'un jeu de visserie (en gris : vis, entretoises, rondelles, écrous),
  • D'un module [6] de mesure de la température situé au dessus de la jupe [8] (en orange),
  • D'un isolateur [10] (en orange) situé au dessous de la jupe [8].

Une nomenclature permet de répertorier les éléments de la e-poignée USB, la première colonne indique le niveau de décomposition :

Nomenclature de la e-poignée
Désignation Fournisseur Référence Repère Qte
Logo
Plateforme C
Média:logo.scad
1
1
Top
Plateforme C
Média:top.scad
4
1
Jupe
Plateforme C
Média:jupe.scad
8
1
Module équipé de mesure de la température
Phidgets
1051
6 & 17
1
Isolateur thermique
10
1
•• Platine d'essais
Conrad
529580 - 62
1
•• Prototypage selon plan
Atelier St MOLF
Média:isolateur.png
1
Thermocouple K - TP01
Gotronic
14460
16
1
Jeu de visserie
1
•• Vis M3 - TCBL POZI M3X6 INOX A2 DIN 7985
BRICOVIS
TCBLZ03/006A2
2
4
•• Rondelle éventail denture extérieure AZ 0 3 INOX A2 DIN 6798 A
BRICOVIS
RONAZ03A2
3
4
•• Entretoise hexagonale M3X10 SIX PANS 5.5 FEM/FEM LAITON NICKELE
BRICOVIS
ENTH03/010FFLAINIS
5
4
•• Rondelle éventail denture extérieure AZ 0 3 INOX A2 DIN 6798 A
BRICOVIS
RONAZ03A2
7
4
•• Entretoise M3
HPC
MPB3-5/B
9
4
•• Rondelle éventail denture extérieure AZ 0 3 INOX A2 DIN 6798 A
BRICOVIS
RONAZ03A2
11
4
•• Vis M3 - TCBL POZI M3X5 INOX A2 DIN 7985
BRICOVIS
TCBLZ03/005A2
12
4
•• Ecrou autofreiné SNEP H100 M5 Z.BLANC
BRICOVIS
ECRSNEH100/005ZN
13
1
•• Rondelle éventail denture extérieure AZ 0 5 INOX A2 DIN 6798 A
BRICOVIS
RONAZ05A2
14
1
•• Entretoise hexagonale M5X16 MALE-FEMELLE Z.BLANC
BRICOVIS
ENTH05/016MFZN
15
1
Couvercle de la casserole
18
1

Prototypage

Le prototypage de la e-poignée USB fait appel à l'approvisionnement de matériels standards, aux activités d'atelier et à l'impression 3D.

Approvisionnement

L'approvisionnement des matériels standards :

  • La visserie chez BRICOVIS et HPC.
  • Le module de mesure de la température est approvisionné au Canada, il s'agit d'un module électronique [6] qui reçoit en entrée le thermocouple [16] et fourni en sortie sur une embase USB la température mesurée.
  • La platine d'essai chez Conrad

Compte tenu du coût élevé de ce module, une étude basée sur l'utilisation d'un microcontrôleur est envisagée. Elle fait l'objet d'un projet séparé.

Atelier

Les activités d'atelier concernent :

  • la finition des pièces fabriquées sur imprimante 3D,
  • la fabrication de l'isolateur [10] (voir la nomenclature),
  • l'assemblage des pièces selon la figure 2.

fabrication de l'isolateur

L'objet de l'isolateur est de réaliser une isolation thermique entre l'entretoise [15] et la jupe [8].

La vue de dessus modélisée sous LibreCAD correspond à :

Isolateur.png

Il est fabriqué à partir d'une platine d'essai à pastilles en bakélite (voir la nomenclature).

Impression 3D

L'impression 3D se réfère aux travaux de recherche de l'école de design de Laval.

La modélisation 3D et la fabrication, des pièces principales de la e-poignée, sont réalisées en Plateforme C au fablab de Nantes en suivant les directives et conseils d'imprimer en 3D à plateforme C. Elles utilisent des logiciels open source, pour :

Dimensions

Les dimensions de la e-poignée USB tiennent compte de la morphologie de la main et des dimensions propres du module de mesure de la température . Les dimensions communes aux trois pièces (jupe [8], top [4] et logo [1]) sont consignées dans le fichier Openscad Media : dim1.scad, les dimensions du CI [6] sont exprimées en pouces et converties en mm, un extrait de ce fichier est donné ci-dessous : CC=25.4;//Coefficient de Conversion (pouce -> mm) L1=1.6*CC;//longueur du CI L2=1.3*CC;//entre axes des trous de fixation du CI l1=1.2*CC;//largeur du CI l2=0.9*CC;//entre axes des trous de fixation du CI r=(0.125*CC)/2;//rayon de percage des trous de fixation du CI e=0.1*CC;//epaisseur des parois R=37.15;//Rayon du cercle de revolution du tore

La jupe

La jupe [8] habille la partie inférieure de la e-poignée. Le logiciel Openscad après compilation du code contenu dans le Fichier:Jupe.scad génère le rendu en 3D correspondant à la figure ci-dessous :

Jupe.png

Elle a la forme d'un parallélépipède (cube dans la terminologie d'Openscad) dont les angles sont arrondis, elle est constituée de 4 flancs latéraux et d'une partie supérieure appelée plateforme. Cette plateforme est percée de 4 trous qui permettent, au dessus, la fixation du CI [6], et au dessous, la fixation de l'isolateur [10] qui a les mêmes dimensions que le CI [6]. Pour tenir compte de la contrainte thermique due à la proximité de la jupe [8] et du couvercle [18], Il est nécessaire d'éviter leur contact, mieux, ménager un petit espace entre eux. En outre, cet espace constitue l'entrée d'un flux d'air ambiant. Ce flux d'air sort par une ouverture (aération) prévue sur la plateforme. Cette aération naturelle permet de maîtriser la température sous la jupe [8] et donc celle du CI [6]. La hauteur de la jupe hj est ajustée en conséquence. En complément, une goulotte permet le passage du câble du thermocouple.

La vue de dessous de la jupe [8] permet de mettre en évidence

Jupe vdd.png

ses longueurs (intérieure et extérieure) et ses largeurs (intérieure et extérieure). Elles correspondent a celles du CI [6] (Longueur L1, largeur l1) auxquelles viennent s'ajouter un multiple de l'épaisseur e des parois, soit :

  • Longueur extérieure = L1+4*e, Longueur intérieure = L1+2*e,
  • largeur extérieure = l1+4*e, largeur intérieure = l1+2*e.

Le code utilise principalement les instructions "rotate", "difference", "union" et "minkowski".

  • L'instruction "rotate" réalise une rotation de 180 degrés nécessaire a l'impression 3D.
  • L'instruction "différence" va permettre de retirer de la matière aux endroits adéquats.
  • L'instruction "union" va permettre de grouper le grand cube et la goulotte.
  • L'instruction "minkowski" effectue la somme d'un parallélépipède (cube) et d'un cylindre, ce cylindre va arrondir les angles du cube, la somme "minkowski" est calculée selon les 3 axes (x, y et z) et prend en compte les dimensions du cube et du cylindre.

Dans ce contexte :

  • l'instruction "minkowski" permet les constructions successives d'un "grand cube" et d'un "petit cube".
  • l'instruction "difference" génère la jupe [8] par soustraction du "grand cube" et du "petit cube" ,

Pour tenir compte de la somme effectuée par l'instruction "minkowski",les dimensions sont :

  • selon les axes x et y, :
    • le "grand cube", dimensionne son cube aux dimensions (L1, l1) du CI [6], et le rayon de son cylindre à 2*e,
    • le "petit cube", dimensionne son cube aux dimensions (L1, l1) du CI [6], et le rayon de son cylindre à e.
  • selon l'axe z, pour obtenir la hauteur hj, il faut dimensionner la hauteur du cube et celle du cylindre à hj/2.

Pour quantifier les dimensions énoncées ci-dessus, il faut additionner aux dimensions (L1 ou l1) du CI [6] 2 fois celle du rayon du cylindre (celui situé sur la partie gauche et celui situé sur la partie droite de la jupe [8]), soit :

  • Longueur extérieure = 1,6+4*0,1 = 2 pouces, Longueur intérieure = 1,6+2*0,1 = 1,8 pouces,
  • largeur extérieure = 1,2+4*0,1 = 1,6 pouces, largeur intérieure = 1,2+2*0,1 = 1,4 pouces.

Les instructions du code sont les suivantes : //Construction de la jupe difference(){

//Contruction du grand cube et de sa goulotte : union(){ minkowski(){ cube(size = [L1,l1,hj/2], center = true); cylinder(h = hj/2, r = 2*e, center = true); } translate([-((L1/2)+(3*e/2)),0,0])cylinder(h = hj, r = 5*r, center = true); //Goulotte } //Construction du petit cube : translate([0,0,-e])minkowski(){ cube(size = [L1,l1,hj/2], center = true); cylinder(h = hj/2, r = e, center = true); }

//Percage des trous de fixation : translate([L2/2,l2/2,hj/2])cylinder(h = hj/2, r = r, center = true); translate([-L2/2,-l2/2,hj/2])cylinder(h = hj/2, r = r, center = true); translate([-L2/2,l2/2,hj/2])cylinder(h = hj/2, r = r, center = true); translate([L2/2,-l2/2,hj/2])cylinder(h = hj/2, r = r, center = true);

//Ouverture pour le passage du cable du thermocouple dans la goulotte : minkowski(){ translate([-((L1/2)+(1.5*e)),0,0])cube(size = [3*r,r/2,1.1*hj], center = true); cylinder(h = hj/2, r = e, center = true); }

//Ouverture pour ventilation translate([0,0,hj/2])cylinder(h = hj/2, r = L2/2, center = true); } }

Le top

Le logiciel Openscad après compilation du code contenu dans le Fichier:Top.scad génère le rendu en 3D du top [4] correspondant à :

Top.png

Parmi les 3 pièces de la e-poignée, le top [4] a pour objet de reconduire la fonctionnalité traditionnelle de la poignée du couvercle de la casserole, c'est à dire, de permettre sa manutention. Une fonctionnalité complémentaire est attendue, c'est celle dite de "milieu de table", le couvercle équipé de la e-poignée, après une rotation de 180 degrés, reçoit la casserole en constituant ainsi la fonctionnalité de milieu de table (voir photo).

N.B. : cette fonctionnalité est envisageable que si la conception, de la casserole et de son couvercle, le prévoit.

La modélisation du top [4] sous Openscad commence par l'initialisation des paramètres. Le code : //Initialisation des parametres //$fn=100; include <dim1.scad> Rt=5.5;//Rayon du cercle de la section du tore coef=0.75;// Coef translation du cylindre de raccordement La vue de dessus du top [4] permet de mettre en évidence ses dimensions.

Top vdd.png

Les 3 parties constituantes sont, le tore, un ensemble de 4 cylindres verticaux et un ensemble de 4 cylindres horizontaux. Le tore est la partie fonctionnelle telle que décrite ci-dessus, ses dimensions doivent tenir compte de la morphologie de la main. Le diamètre extérieur du tore (Øtore) est d'environ 85 mm, pour le calculer :

Øtore = 2*(R + Rt) = 2*(37.15 + 5.5) = 85.3mm

Par rapport à une main féminine, cette dimension est optimale. Le principe utilisé pour modéliser le tore est celui de l’extrusion qui convertit un objet 2D en un objet 3D. Openscad utilise une instruction composée de 3 parties :

  • "rotate_extrude convexity = 10", qui réalise l'extrusion circulaire,
  • "translate" qui exprime le rayon du cercle de révolution
  • et "circle" qui exprime le rayon du cercle de la section du tore.

La fenêtre USB est réalisée par l'instruction "difference" entre le tore et un cube.

Le code : difference(){ rotate_extrude(convexity = 10) translate([R, 0, 0]) circle(r = Rt); //rayon du cercle de la section du tore translate([R,0,0])cube(size = [15,12,8*e], center = true);//fenetre USB } L’ensemble des 4 Cylindres verticaux (Cv) est conçu pour répondre à 2 fonctionnalités, la première, en référence à la vue éclatée de la e-poignée (fig 2), la fixation du top [4], au dessus du CI [6], à l'aide de 4 entretoises filetées [5] et de 4 vis [2] équipées de rondelles [3], la deuxième, le maintien par simple emboîtement du logo [1]. La modélisation de chaque Cylindre vertical fait appel à un module Cv qui reçoit les coordonnées x et y. Le code : //module Cylindre vertical (Cv) rc=7.5;//rayon du cylindre module Cv(x,y){ difference(){ translate([x,y,0])cylinder(h=2*Rt,r=rc,center=true); translate([x,y,e/2])cylinder(h=1.01*(2*Rt-e),r=rc-e,center=true);//lamage translate([x,y,0])cylinder(h=20,r=r,center=true);//trou } } Le module Cv est appelé pour modéliser chacun des 4 cylindres, accompagné des coordonnées x et y égales aux entre-axes des trous de fixation du CI [6], soit L2/2 et l2/2 (fig 6), exprimés selon les 4 combinaisons des signes + et -. Le code : //Construction des 4 cylindres verticaux Cv(L2/2,l2/2); Cv(L2/2,-l2/2); Cv(-L2/2,-l2/2); Cv(-L2/2,l2/2);

L’ensemble des 4 Cylindres horizontaux (Ch) relie le tore à l'ensemble des 4 cylindres verticaux. La modélisation de chaque cylindre horizontal fait appel à un module Ch qui reçoit les coordonnées x et y du centre du cylindre ainsi que la valeur d'un angle de rotation. Un paramètre "coef" fixé à 0.75 permet d'ajuster la position de ce centre. Le positionnement du cylindre est montré ci-dessous :

Top detail.png

Le code : //Module Cylindre horizontal de raccordement module Ch(x,y,z){ translate([x*coef,y*coef,0])rotate([90,0,z])cylinder(h=10,r=Rt/1.1,center=true); } Le module Ch est appelé pour modéliser chacun des 4 cylindres, accompagné des coordonnées du centre du cylindre, L2 et l2, exprimés selon les 4 combinaisons des signes + et -. Le code est : //Construction des 4 cylindres horizontaux de raccordement Ch(-L2,l2,atan (L2/l2)); Ch(L2,l2,-atan (L2/l2)); Ch(-L2,-l2,-atan (L2/l2)); Ch(L2,-l2,atan (L2/l2)); Pour vérifier le positionnement du centre de chaque cylindre horizontal (fig 7) :

x*coef = 1.3*0.75 = 0.975

y*coef = 0.9*0.75 = 0.675

Angle de rotation = atan (L2/l2) = atan(1.444) = 55.304 degrés

Le logiciel Openscad après compilation du code contenu dans le Fichier:Logo.scad génère le rendu en 3D du logo [1] correspondant à la figure ci-dessous :

Logo.png

L'objet de la pièce "logo" est de réserver un emplacement ou le logo Quiet cook peut être matérialisé. En complément, cette pièce cache les vis de fixation.

Il est composé d'une plate-forme cylindrique équipée :

  • d'une fenêtre qui permet la visibilité de l'embase USB du CI [6],
  • de 4 plots conçus pour assurer l'assemblage par emboîtement du logo sur le top [4].

L'emboîtement est réalisé grâce a la forme conique des 4 plots qui s'introduisent dans les 4 lamages des cylindres verticaux du top [4].

Chaque plot est évidé par une sphère pour accueillir la tête bombée de la vis de fixation du top [4].

Le code : module plot (x,y){ r1=4.9;//Rayon du cone inferieur r2=4.95;//Rayon du cone superieur rs=3.5;//Rayon de la sphere difference(){ translate([x,y,-e])cylinder(e,r1=r1,r2=r2,center=true); translate([x,y,-e])sphere(3.5,center=true); } }

//Initialisation des parametres include <dim1.scad> Rl=R-12;//Rayon du logo //$fn=100;

//Construction du logo rotate([180,0,0]){

//Construction de la plateforme difference(){ //Construction du cylindre plateforme translate([0,0,0])cylinder(e,r=Rl,center=true); //Decoupe de la fenêtre USB translate([3+L2/2,0,0])minkowski(){cube(size = [8,6,1.1*e], center = true); cylinder(r=3,h=e); } }

//Construction des 4 plots plot(L2/2,l2/2);//Plot 1 plot(-L2/2,l2/2);//Plot 2 plot(-L2/2,-l2/2);//Plot 3 plot(L2/2,-l2/2);//Plot 4

}

Evaluation - Proposition d'amélioration

L’apéro-projet du mardi 17 février 2015 organisé par Julien et Maëlle a été l’occasion de la présentation de la e-poignée suivie de l’analyse du tableau des contraintes, de l’appréciation des résultats et de la suggestion des axes d’amélioration. En regard de chaque contrainte, les participants, Laurent en particulier, donnent leur avis :

  1. Montage/démontage sur le couvercle [18] : un participant expérimente l’opération, le résultat est satisfaisant. Hors réunion, une amélioration est envisagée. Elle consiste en l'usinage de l’entretoise [15] pour augmenter la profondeur de pénétration de la tige filetée du couvercle [18]. La contrainte est levée.
  2. Fixation M5 sur le couvercle [18]: d'un couvercle à l'autre, le pas de vis, dans le cas présent l'entretoise [15] M5, peut être différent, M4 par exemple. Ou bien, selon un standard anglais, en pouces plutôt qu'en millimètres. Dans ces cas, il convient d'adapter l'entretoise et si sa hauteur est différente d'ajuster la hauteur de la jupe [8]. La contrainte est levée (filetage M5 uniquement).
  3. Application du thermocouple [16] sur l'entretoise [15] : le thermocouple [16] est introduit à l'aide d'un trou de 1 mm de diamètre percé au préalable sur l'un des pans de l'entretoise [15] hexagonale. Une goutte de super glue permet de coller l'ensemble. En outre, une gaine thermorétractable enveloppe le thermocouple [16] et son câble autour de l'entretoise [16]. La contrainte est levée.
  4. Fixation du circuit imprimé [6] : fixation correcte. La contrainte est levée.
  5. Accessibilité du bornier de connexion du thermocouple [16] : l'accessibilité est correcte, les 2 fils du thermocouple [16] sont connectés au bornier par serrage des vis à l'aide d'un tournevis d'horloger. La contrainte est levée.
  6. Visibilité de l’embase USB pour faciliter la connexion du câble : des fenêtres ont été aménagées sur le top [4] et le logo [1]. La visibilité est correcte. La contrainte est levée.
  7. Reconduire la fonctionnalité de manutention de la poignée : cette fonctionnalité est correcte. La contrainte est levée.
  8. Incrustation du logo [1] : non réalisée. La contrainte est maintenue.
  9. Incrustation du sigle USB : non réalisée. La contrainte est maintenue.
  10. Peinture (couleur du logo : vert, orange, gris) / Vernis : non réalisée. Un essai de peinture est réalisé sur l'une des pièces qui n'existe plus dans le prototype actuel. Une peinture d'apprêt ainsi qu'environ 10 couches successives n'ont pas suffit à couvrir correctement la pièce. La pièce a été coupée en 2 morceaux. La photo ci-dessous montre l'une des 2 moitiés. Le PLA a absorbé comme une éponge la peinture ! L'usage au quotidien de la e-poignée a mis en évidence la nécessité de la protéger pour s'assurer d'une bonne hygiène alimentaire. Amélioration : modification des paramètres dans Slic3r, en vue d'obtenir une couche externe plus épaisse et plus dense. La protection de la pièce par un vernis s'avère une solution envisageable. La contrainte est maintenue.
    Peinture.JPG
  11. Tenue en température : l'isolateur [10] en bakélite constitue une isolation thermique satisfaisante. La contrainte est levée.
  12. Assurer la fonction complémentaire de milieu de table (voir photo) : le sujet n'a pas été traité car la photo n'était pas accessible sur le wiki. Cette fonction nécessite une excellente stabilité du couvercle quand celui-ci est retourné. Actuellement, dans cette configuration, la stabilité n'est pas bonne car l'ensemble repose sur le logo [1]. La contrainte est maintenue.
  13. Étanchéité au ruissellement : Cette contrainte est exclusive aux composants électroniques. Après cuisson, le nettoyage à l'eau du couvercle est nécessaire, démonter à chaque fois la e-poignée est fastidieux, le mode de cuisson en basse température utilisé ne projette pas de matière grasse. Toutefois, une condensation est présente. Avec beaucoup d'attention, un simple rinçage de l'intérieur du couvercle est suffisant. Amélioration : imprégnation ou vernis des composants électroniques. La contrainte est maintenue.
  14. Assemblage facile : les 4 vis de fixation de l'isolateur [10] sont difficiles d'accès et nécessite un tournevis spécifique. Amélioration : revoir la fixation de l'isolateur [10]. La contrainte est maintenue.

Améliorations

E-p a.JPG

La photo ci-dessus montre la e-poignée réalisée par LNA Prototypes. Cette réalisation intégre une partie des propositions d'améliorations. Elle permet de lever une partie des contraintes.

  1. Rappel : montage/démontage sur le couvercle [18] : un participant expérimente l’opération, le résultat est satisfaisant. Hors réunion, une amélioration est envisagée. Elle consiste en l'usinage de l'entretoise M5 [15], selon la figure Fichier:Ent-M5.pdf . La contrainte est levée.
  2. Rappel : fixation M5 sur le couvercle [18]: la contrainte est levée.
  3. Rappel : accessibilité du bornier de connexion du thermocouple [16] : la contrainte est levée.
  4. Rappel : visibilité de l’embase USB pour faciliter la connexion du câble : la contrainte est levée.
  5. Rappel : incrustation du logo [1] : le logo est incrusté (voir photo). La contrainte est levée.
  6. Rappel : incrustation du sigle USB : non réalisée. La contrainte est maintenue.
  7. Rappel : peinture (couleur du logo : vert, orange, gris) / Vernis : La contrainte est levée.
  8. Rappel : tenue en température : l'isolateur [10] en bakélite constitue une isolation thermique satisfaisante. La contrainte est levée.
  9. Rappel : assurer la fonction complémentaire de milieu de table (voir photo) : le sujet n'a pas été traité car la photo n'était pas accessible sur le wiki. Cette fonction nécessite une excellente stabilité du couvercle quand celui-ci est retourné. Actuellement, dans cette configuration, la stabilité n'est pas bonne car l'ensemble repose sur le logo [1]. La contrainte est maintenue.
  10. Rappel : étanchéité au ruissellement : Cette contrainte est exclusive aux composants électroniques. Après cuisson, le nettoyage à l'eau du couvercle est nécessaire, démonter à chaque fois la e-poignée est fastidieux, le mode de cuisson en basse température utilisé ne projette pas de matière grasse. Toutefois, une condensation est présente. Avec beaucoup d'attention, un simple rinçage de l'intérieur du couvercle est suffisant. Amélioration : imprégnation ou vernis des composants électroniques. La contrainte est maintenue.
  11. Rappel : assemblage facile : les 4 vis de fixation de l'isolateur [10] sont difficiles d'accès et nécessite un tournevis spécifique. Amélioration : revoir la fixation de l'isolateur [10]. La contrainte est maintenue.