

Important Note:

Cleaning the plug contacts

Plug contacts can oxidize, the resistance increases or contact failures occur.' The problematic component is the multipoint connector. The multipoint plug is hardly affected by this.

Cleaning:

Proper cleaning

1. Ultrasonic: This possibility is not available for in-situ service.
2. So-called contact sprays:

Proper application:

- Spray on
- The contact spray must be completely removed. The plug must be washed - subsequent ultrasonic treatment would be preferable.
- The contacts must be greased with pole grease or Vaseline (this is hardly possible with Panduit plugs).

Again, this method is not available for in-situ service.
Where the contact is only sprayed with contact spray, a momentary contact will be present. However, renewed oxidation is accelerated by the "contact spray" and the confacts become dirty very rapidly.

Accordingly, the only correct method:
The Panduit plug (multipoint connector) must be replaced. A special gripping device is required (available from Emo).

Foreword

This Service Manual concerns the Compact 5 CNC and F1 CNC. The electrical-electronic section applies for the Compact 5 CNC and F1 CNC.
For precise trouble-shooting, experience with simple electrical measuring instruments is required (see Description of Measuring Instruments).

The brochure is designed so that you can obtain servicing proficiency yourself.
The most important special information, that has already been issued, has also been integrated.
Possible future information should be attached to this Service Manual, by you, so that the documentation remains comprehensive and up-to-date.

Copies of this Service Manual for your employees, should be made by you, as required.
The required number of service cards, circuit diagrams and prints of the measuring points (Chapter 15) can be obtained from EMCO Hallein.

Page

Chapter 1

General information on the Service Manual

1. The Service Manual is only intended for use by service personnel, and not for the final customer.
Circulation and reproduction only with the written permission of EMCO MAIER \& CO, Hallein, Austria.
2. Safety Note:

Servicing and repairs must be expertly carried out. The service technician must be aware of the pertinent national safety regulations. He must be authorized to carry out service work.
3. Service tools COMPACT 5 CNC/F1-CNC (mechanical):

- Fork wrenches sizes 7, 10, 13, 23
- Screwdriver 3 and 6 mm
- Screwdrivers for cross-recess DIN 5260, Philips size 2 and 3
- Hexagonal socket wrenches size 2, 3, 4; 5 (2.5 for changing pc-board)
- Round files
- Timer for setting the slide clearance

Special tool note: To turn the spindles, insert a stud in the bore. A self-produced spanner wrench is more suitable.

4. Measuring instruments for measuring the electrical rated value:

4.1. Multimeter
Characteristic: Minimum accuracy $\pm 1.5 \%$
Voltage range $1-250 \mathrm{~V}$ ac/dc Current range $100 \mathrm{~mA}-10 \mathrm{~A} \mathrm{ac} / \mathrm{dc}$ Resistance range 1 - 10 MOhm Internal resistance about $3 \mathrm{KOhm} / \mathrm{V}$
(e.g. BBC Metravo 2 H)

4.2. Measuring instrument for measuring digital conditions

- Logic tester for 5 V level (TTL) (e.g. LOGIC Probe LT 2500; Messrs. MONACOR)
- Alternatively, a multimeter with an internal resistance of about $1 \mathrm{MOhm} / \mathrm{V}$ would be suitable (e.g. BBC Metravo 3D)... This device would also replace the instrument specified under 4.1.
4.3. One oscilloscope

Every modern device, with a mains voltage-proof input is suitable for this purpose.

Note:

- The reference potential for all low voltages in the control is ground (connect with the housing and protective earth).
- Always earth the devices properly (via power socket).
- The Service Manual states the most suitable measuring points with comparative values.

Attention!

Mains potential on the main spindle pc-board.

5. The COMPACT 5 CNC machines with serial numbers 1-299 differ constructively in some points from the machines with serial numbers over 300 . The major deviations are shown in chapter 10.

Immediately recognizable difference: Stepping motor cable

Note:

The \oplus symbol is shown on several pages of chapters 4 and 5. This symbol means that deviating terms or procedures apply for COMPACT 5 CNC machines with serial numbers below 300 . These deviations are listed in chapter 10.
6. The instruction electrical-electronic is the same for COMPACT 5 CNC and F1 CNC. Differences are listed.
7. As a matter of principle, the newer pc-boards are suitable as replacement pc-boards for the older pc-boards.
8. Please note the comments on frequent sources of defects. You will save yourself long weary searches.

The Reference Number System

1. Ref, No, of basic machine

Compact 5:

The reference number is engraved on the bed (on mounting socket for vertical drilling and milling attachment).

Fl CNS:

The reference number is engraved on the base below the milling label.

2. The Ref. No. for the electrical equipment and the electrical control unit

On the inside of the electrical housing you find these numbers.

```
A6S 100 000 ....Ref.No. for electrical equipment
A6S 105 000 ....Ref.No. for electrical control
    003 240....Serial number (by earlier controls on own plate)
```

76λ
86
($)^{\infty}$
c.53

2.1. The E-equipment number

The E-equipment number indicates the voltage variant and the design variant.
2.1.1. COMPACT 5 CNC

A6A 100 000	$\mathrm{A}=220 \mathrm{~V} /$ metric
A6B 100 000	$\mathrm{~B}=240 \mathrm{~V} /$ metric-inch
A6C 100000	$\mathrm{C}=115 \mathrm{~V} /$ metric-inch

Variants A, B and C were built up to Serial No 299.

A6F 100 000	$\mathrm{F}=220 \mathrm{~V} /$ / metric
A6G 100 000	$\mathrm{G}=240 \mathrm{~V} /$ metric-inch
A6H 100000	$\mathrm{H}=115 \mathrm{~V} /$ metric-inch
A6N 100 000	$\mathrm{N}=220 \mathrm{~V} /$ France version

Variants F, G, H and N were built up to Serial No. 1499.

A6R 100000
A6S 100000
A6T 100000
A6U 100000
A6V 100000
A6W 100000
$\mathrm{R}=220 \mathrm{~V} /$ metric
S = 220-240 V / metric-inch
$T=110-120 \mathrm{~V} /$ metric-inch
$U=220-240 \mathrm{~V} /$ France version
$\mathrm{V}=100 \mathrm{~V} /$ metric-inch
$W=110-120 \mathrm{~V} /$ metric-inch CSA

These variants were built from Serial No. 1500. At present, only variants S, U, V and W are offered.

Sopicil
c. 5533

A6s

2.1.2. F1-CNC

F1S 100000	$\mathrm{~S}=220-240 \mathrm{~V} /$ metric-inch
F1N 100000	$\mathrm{~N}=220-240 \mathrm{~V} /$ France version
F1V 100 000	$\mathrm{~V}=100 \mathrm{~V} /$ metric-inch
F1W 100 000	$\mathrm{W}=110-120 \mathrm{~V} /$ metric-inch CSA

Should the last digit not be 0 , this indicates a modification in the internal construction (e.g. A6S 100 001).
2.2. The E-serial number indicates the pc-board structure

or
F1 CNC $-\left\{\begin{array}{c}\text { F1S } 105000 \\ \text { to } \\ \text { F1W 105 } 000\end{array} \quad\right.$ as before

Where the last digit is not 0 (Zero), this indicates a modification in the internal construction.

2.3. The serial number

This number is important, since it indicates the development stage. Please note this number, especially for retrofitment and extensions.
e.g. A6W $105000 / 3245$

3. The pc-board number

The numbers are indicated either by an adhesive label or by embossing.
As a matter of principle, the latest generation pc-boards are supplied as replacement pc-boards. Exchangeability is compatible upwards.

Example:

Fitment of pc-board F1A 111000 is possible in machines with pc-boards A6A 111001.
This is not possible yice-versa.
3.1. The mains pc-board

Comp. $5 \mathrm{CNC}\left\{\begin{array}{lllll}\mathrm{A} G \mathrm{~A} & 111 & 000 & 220-240 & \mathrm{~V} \\ \mathrm{~A} C \mathrm{C} & 111 & 000 & 115 & \mathrm{~V}\end{array}\right\}$ up to Serial No. 299
F1 CNC——\{llllll $\left.\begin{array}{lllll}\text { F1A } & 111 & 000 & 220-240 & \mathrm{~V} \\ \text { F1C } & 111 & 000 & 110-120 & \mathrm{~V} \\ \text { F1V } & 111 & 000 & 100 \mathrm{~V}\end{array}\right\}$ Latest version for use in

3.2. The main spindle pc-board

3.3. The step motor pc-board

Comp 5 CNC $\backslash\left\{\begin{array}{lll}A 6 A & 113000 \quad u p ~ t o ~ \\ 299\end{array}\right.$
(A6A 113001 from 300
F1 CNC——F1A 113000
for F1-CNC

3.4. The computer pc-board

Comp. 5 CNC $\left\{\begin{array}{llll}A 6 A & 114 & 000 & \text { metric } \\ \text { A6C } & 114 & 000 & \text { metric-inch }\end{array}\right\}$ up to 49
These pc-boards are not suitable for the video and tool reverser extensions.

Comp. 5 CNC $\left\{\begin{array}{llll}\text { A6A } & 114 & 001 & \text { metric } \\ A 6 A & 114 & 001 & \text { metric-inch }\end{array}\right\}$ from 50-618
These pc-boards are not suitable for the video and tool reverser extensions. However, they can be retrofitted by Emco.

Comp. 5 CNC $\left\{\begin{array}{llll}A 6 A & 114 & 002 & \begin{array}{l}\text { metric } \\ A 6 A\end{array} \\ 114 & 002 & \text { metric-inch }\end{array}\right\}$ from 619-2499
These pc-boards are suitable for the video extension. They are not suitable for the tool reverser extension (can be retrofitted by Emco).

Where an A-variant is replaced by a C-variant, the metric/inch selector switch must be fitted.

```
Comp. 5 CNC _ A6C 114 003 from 2500 up to 3539
    This pc-board has the following software extensions:
    Video and RS }232\mathrm{ interface, tool reverser and DNC inter-
    face, absolute value programming
Comp. 5 CNC - A6C 114 003 from 3540, type according
                                    to Tüv, otherwise
                                    as above
F1 CNC _ F1C 114000
for F1-CNC
3.5. The video pc-board
Comp. 5 CNC - A6A 115000 Only COMPACT 5 CNC (lettering on EPROM CG1)
```

Comp. 5 CNC/
F1 CNC - A6A 115000 (lettering on EPROM CG2

```
This pc-board is suitable
```

3.6. The tool reversal pc-board, also DNC pc-board

Comp. 5 CNC A6A $116000 \quad$| Tool reversal pc-board for |
| :--- |
| COMPACT 5 CNC |

\(\left.\begin{array}{l}Comp. 5 \mathrm{CNC} /\} \quad A6A 116001

F1 CNC\end{array}\right\} \quad\)| Tool reversal pc-board for |
| :--- |
| COMPACT 5 CNC and DNC |
| pc-board for F1-CNC |

3.7. Cassette deck assembly

Comp. $5 \mathrm{CNC} /\{$ A6F $090000 \quad$ Contains the recorder and 100 interface pc-board A6F 091000. Suitable for COMPACT 5 CNC and F1-CNC.

Note: The interface pc-board is fitted in the recorder of the COMPACT 5 CNC with serial numbers lower than 50.

Chapter 3

The Service card for compact 5 CNC!

and FI CNC

When sending in below mentioned service-/spare parts to EMCO Hallein, the service card has to be attached:

- Complete electrical control unit
- Step motors
- Main motor
- Power supply circuit board
- Main spindle circuit board
- CPU circuit board
- Cassette Deck with Interface circuit board
- Video circuit board
- DNC-board
- Step motor board

Reason for service card

1. All electronic and electrical parts are thoroughly checked before they are built in. If there are errors occurring, the EMCO service department needs the defective boards to locate the error.
2. Organisational reasons

Therefore the following regulations:

1. If faults occur on above parts during the guaranty period, we shall write out a credit note on the condition that the defective part is sent to the EMCO service department together with the filled out service card within one month's time.
2. Outside the guaranty period we can re-imburse you after the repair service only if the defective part comes with a filled out service card (within one month's time). For parts not sent in or parts sent in without a service--card there will be no re-imbursement to you whatsoever. We follow an usance which is quite common in the electronic repair sector. We ask for your understanding.

(1) Here you enter the designation of the part (e.g. main motor circuit board). The second column is for Ref.No./Order No. and the third one for Serial No. - The Ref.No./Order No. and the Serial No. can be read directly from the board (sticker).
(2) Should you note anything special has happened to the defective part, please write here.
(3) Please also fill in Order No. and Serial No. of the new part which you are going to mount.
(4) + (5) is selfunderstood

(6) + (7) Numbers are to be found inside of the electrical housing.
(8) The machine number is engraved on the backside of the bed. (by F1 CNC on base)
(9) Describe in a few words the fault, e.g. main motor not running.

Chapter 4

Fault rectification

1. Notes on trouble-shooting
2. Checklist for fault location
3. Fault repair

Removal of the pc-boards
Disconnect the plug connections (disconnect the potentiometer)
Unscrew the screws
Remove the pc-boards

Attention:
Pull out the computer pc-board upwards. Pull out the step motor pc-board downwards, otherwise the pins of the connector plug on the computer pc-board will be bent!

1. Notes on trouble-shooting and fault repair

A basic understanding of the structure of the electrical control and the function of the assemblies is required for fault repair. The functions of the assemblies are shown in chapter 5.

Structure of chapter 4 ,
The checklist, 4.2., is used for rough fault location. Notes on detailed testing (4.3.) are given and you will be able to repair the causes of the fault.

Fault repair without measuring devices
You may have to replace several pc-boards or assemblies, since you will be unable to precisely locate the cause of the fault.

Fault repair with measuring devices

The fault can be located.
The measuring points are precisely listed in 4.3. and in chapter 5.

1. Proceed systematically. Please note the relationships of internal/external fault sources.
2. Please note: Incorrect service can destroy intact components!
A defective component can destroy other parts. For this reason, check and exchange the components in the correct sequence.

Example:

A defective step motor can destroy the step motor pc-board. For this reason, where the feed drive is defective, check the step motor first, and replace where necessary, prior to exchanging the step motor pc-board.
3. Visual checks:

Visual checks are essential. Numerous defects and causes of faults, such as

- fouled air filter
- chips in the internal space (short-circuits)
- burnt contacts
- loose components
can be rapidly recognized by visual checks, and can be repaired.

4. Make certain that you have not loosened or disconnected any connections whilst carrying out your service. Check through all functions, you may thus be able to prevent a possible "next failure".

2. Checklist for fault location

2.1. Check mains supply

The mains voltage range is specified on the type plate (obverse of electric control).
The maximum admissible values have $a \pm 5 \%$ tolerance.
With - 10%, e.g. the computer pc-board will start to produce software failures. With + 10%, the mains pc-board can become damaged (thermal damage of the voltage controller of the transformer, etc.).
2.2. Visual inspection

See the notes on trouble-shooting
2.3. Check disengagement of the emergency-off pushbutton
2.4. Switch on the main switch

- "ON control lamp lights up	no, see page 4.8
- Main contactor energizes (clicking noise)	no, see page 4.9
- Blower operates	no, see page 4.10
- Display and manual operation	no, see page 4.11 page 4.12

2.5. Switch on main motor

- Main motor running	no, see page 4.13
- Main motor speed can be	no, see page 4.14

2.9

- Command G64 (cutting-off power of step motors) is executed (sign on screen).
no, see page 4.21
$\underline{2.10}$
- Switching over from inch to metric resp. vertical,/horizontal is possible. (sign on screen)
no, see page 4.21
2.11
- G33/G78 is executed (only Compact 5CNC)
no, see page 4.22
$\underline{2.12}$
- G65 is executed (display shows letter "C")
no, see page 4.23
- SAVE, CHECK and LOAD operations are possible.
no, see pages 4.23 and 4.24
2.13
- Impulses on video outlet existing

No impulses on video outlet see page 4.25

No impulses on antenna outlet see page 4.26
r

- Impulses on antenna outlet existing ! \qquad
- Impulses on Interface RS 232 existing

No impulses on Interface
RS 232 see. page 4.27

- Pulses present from several outputs	No pulses at several outputs see page 4.28
2.14. Functions of the tool reverser and DNC pc-board	
- Tool reverser can be energized in CNC and manual operation (only on COMPACT 5 CNC)	No movement of the tool reverser see page 4.29
- Switching the main spindle On and Off with MO3/MO5 is possible	not possible see page 4.30
- DNC interface: Outputs are set, inputs are executed	No function see page 4.31

3. Fault Clearing

Note: Hints which are marked with \oplus are only valid for Compact 5 CNC with serial numbers below 800!

Main switch on

Control lamp for main switch not illuminated

Note:

If the main fuse becomes defect when you switch on the machine, look for short circuit on:

- socket(s)
- connection for machine lamp
- fan
- Power supply board
- control lamp

Graphic presentation of measuring points (MP)
see chapter 15

Trouble-shooting with a voltmeter:
Look for, and check the voltage on the guard coil. Wiring information is given on plans A13.168-22 (for the COMPACT 5 CNC) and A13.168-71 (for F1-CNC) as well as on A13.168-72 \oplus.

Please note that contact $5 / 6$ of the main switch is onily closed between limit positions 0 and 1 (wiper contact).

No display

Please note:
Incorporated faults in the 5 V circuit: The 5 volts are also present on the interface, video, tool reverser (DNC), step motor and main spindle pc-board (only COMPACT 5 CNC). Similarly, a fault (short-circuit) can also be incorporated from the "outside" via the DNC interface (X62). Check by disconnecting the connections (see wiring diagrams A13.168-22 and A13.168-71 \oplus).

In addition, the voltage can break down due to excessive load of the 5 V circuit \oplus. The consequence of this, is that undefined fault conditions occur on all possible pc-boards.

Measuring the voltage: This must be between +4.9 V and +5.1 V (at X44).

Where the voltage exceeds this range, unplug the pc-boards until the cause is found. Replace the power pack pc-board.

Main motor fails to operate

Note:

A defective main motor can also destroy the main spindle pc-board. For this reason, always check the motor prior to repairing the main spindle pc-board.

Main motor operates, speed cannot be controlled

Replace the main spindle pc-board

Look for possible defects on the pc-board:

- Potentiometer
- Thyristors on heat sink
- Diodes

Main spindle display dark

Check light barrier(look outside sources of defects)

Replace main motor board

Notice:

Adjusting the indication of the main spindle speed.

Note:

R1 has been adjusted by the factory, if it has been turned,adjust it using a speedometer.

${ }^{+} X_{,}, \pm$and ${ }^{+} Z$ traverse with feed
 $10-100 \mathrm{~mm} / \mathrm{min}$ not possible

Programm input of G00/G01/G02/G03/G04 is not possible

Meter 5V circle MP12

Replace computer board

Program start is not possible

Note:
When using the DNC interface, faulty circuits can cause disturbance of some functions of the computer pc-board, e.g.

- HI on Pin 9/X62 (manual/CNC changeover) blocks the Manual/CNC pushbutton
- LO on Pin 10/X62 (protective cover open, with J4 open) produces intermediate HI and start interlock.
- etc.

For this reason, where there are defects on the computer pc-board, unplug the accessories!

Command G64 is not executed

The switching over from metric to inch
 or inch/metric/vertical/horizontal is not possible

Change-over-switch b3
metric $=$ connecting Pin A to Pin 2$\}$
inch $=$ connecting Pin A to Pin 1$\}-$ COMPACT 5 CNC
for $\mathrm{Fl} 1-\mathrm{CNC}$ see page 5.30

G33/G78 is not executed

Operation SAVE, CHECK and LOAD is not possible

- Switch off mainmotor
- Try new cassette (erase cassette before beginning with $\rightarrow+$ + DEL)
If the new cassette works, the old one has been defect.

Check correct pluging of plug X7 and X92

No pulses at the video output

Check setting $50 / 60 \mathrm{~Hz}$!

Check $50 / 60 \mathrm{~Hz}$ setting!

Check function of connectied apparatures.
Check transmission code.
Check Pin-Connections of plug.

Note:

Look on this passage the hints above chapter RS232. In nearly all cases you find the fault by the new connected apparaturs.

No impulses on more outlets

Check, if computer board A6C 114002 or 003 is mounted (only, Compact 5 CNC)

A6C 114002 (003) mounted
A6C 114000 or 001 mounted

Replace videoboard

No movement of the tool reverser (neither in CNC nor in manual operation)

Check whether the tool reverser lock (bow contact J1 on tool reverser pc-board) has bow contact. See also the remarks in the tool reverser chapter regarding "wrong connection".

(i.e. the defect is in the motor power circuit)

A13.168-71)

(i.e. the defect is in the control power circuit)

Check + 5 V at X 68
$1 / 2$ and +10 V at X 63
$1 / 3$

Exchange computer pc-board

No function on DNC Interface

```
Check wiring to computer board
    |
Replace DNC board (F1 CNC)
Replace turret circuit board (Compact 5 CNC)
```



```
Replace computer board
```


Note:

See also chapter DNC-board resp. turret circuit board.

Chapter 5

Function of the components/ sources of defects

+ External components - sources of defects

1. Light barrier (COMPACT 5 CNC)
2. Step motors
3. Main motor
4. Tool reverser motor (only COMPACT 5 CNC)
5. Chip door limit switch (only Fl-CNC)

+ Internal components - sources of defects

1. Computer pc-board
2. Step motor pc-board
3. Interface pc-board and cassette recorder
4. Main spindle pc-board
5. Power pack pc-board
6. Fuses
7. Video pc-board
8. Tool reverser and DNC pc-board
9. Measuring points in the electrical control

A basic understanding of the design of the electrical control and the function of the individual assemblies, is required for fault repairs.

The wiring diagrams and the flow diagram indicate the relationships and are aids to improved understanding.

5.1 External components - sources of defects

5.1.1. Light barrier (only COMPACT 5 CNC)

- Two light barriers are fitted on the main spindle, on a common mount.
- The first light barrier reports the main spindle speed. This light barrier transmits 100 pulses per revolution to the computer and the main spindle pc-board. Where the light barrier is defective, there is no speed display and wrong or no thread cutting G33/G78.
- The second light barrier is for the return report of the synchronous pulse. This light barrier transmits 1 pulse per revolution of the main spindle to the computer. Where this light barrier is defective, the G33/G78 command is not executed, since the computer does not receive a synchronous pulse.
$-\oplus$

Please note:
A defective light barrier can destroy the complete 5 V power supply. For this reason, the 5 V supply should always be initially checked.

Measuring the light barrier function

The following types of defect are possible (same diagnosis):

- No supply voltage +5 V , GND at the light barrier
- Light barrier defective
- Wiring defective
- Main spindle pc-board defective (the signal for the computer pc-board is transformed via this pc-board)
- Computer pc-board defective

Measure on the main spindle pc-board

Measuring device with - pole on X11 / 6 of the power pack pc-board (GND)

Digital tester with GND on X11/6 and + 5V at X11/5

Note: The chopper disk and the light barrier can be fouled by dust and oil.
Check the bore of the chopper disk. Clean the light barrier with a cloth.

Description of the measuring points:

```
MP21 + 5 V supply
    (at \(\mathrm{X} 24 / 5\) ) ; disconnect plug X23, then +5 V at pin.
    Connect plug X23, then about 1.2 V due to the load
    of the light barriers.
MP22 Counting pulse (from the main spindle pc-board to
    the computer pc-board)
    (at X23/1);
    This measuring point is only useful for testing the
    function of the main spindle pc-board.
    (remove light barrier and cover individually)
    Synchronous light barrier -
    open: 5 V
    covered: 0-1 V pulse, then 5 V again
MP23 Counting pulse (from the light barrier)
    (at X23/2)
    The function of the light barrier itself is tested
    with this measuring point.
    (open 0-1 V, covered 5 V )
    In the fitted condition, the switch processes can
    be checked by very slow rotation of the main spindle,
    and appropriately setting the light barrier.
```


MP24 Synchronous pulse (from the light barrier) (to X23/3)
 Procedure as for MP 3, however 0-1 V pulse should only occur once with one main spindle revolution (start for G33/G78).

MP25 Synchronous pulse (from main spindle pc-board to computer pc-board) (to X23/4)
This measuring point is only useful for testing the function of the main spindle pc-board.
(remove light barrier and cover individually)
Open 5 V , covered $0-1 \mathrm{~V}$.

MP26 GND
No voltage may be measurable.

Note:
It is possible, with low impedance measuring devices (less than 10 kOhm), to measure voltages lower than 5 V , due to the internal voltage drop in the light barrier.

With digital tester, accordingly HI for 5 V and LO for 0 V .

Light barrier counting pulse Light barrier synchronous pulse

5.1.2. Step motor

- Step angle per step: 5°

Supply voltage: 10 V dc

With every step there is a pulse of about $200 \mu \mathrm{sec}$. at 40 V . Where these 40 V pulses are lacking, high frequencies are not possible (no rapid traverse).

- The winding

- Sources of defects:

The motor can have the following electrical defects:

- Interturn short-circuit (i.e. the resistive value is no longer correct)
- Winding short-circuit (i.e. there is a measurable passage through the not related windings)
- Earth short-circuit (i.e. there a measurable passage of one winding against earth, measurement with higher voltage, e.g. 100 V is recommended)
- Winding breakage (i.e. no passage)
- Connections (resistance value)

A defective step motor can destroy the 10 V and the 40 V circuit (on the step motor pc-board). For this reason, always check the step motor first.

Section sequence table

Step	Brown	Red	Orange	Yellow
1	x	x		
2		x	x	
3			x	x
4	x			x

Procedure: Step motor

5.1.3. Main motor

- 2 different motors were used on the COMPACT 5 CNC.

Previous make Kemo, present make Baumueller. The Baumueller motor is described. The values are similar to those of the Kemo motor. The F1-CNC is only fitted with the Baumueller motor.

- A defective main motor can destroy the main spindle pc-board. For this reason, always check the motor first.
- This motor is a permanent magnet motor. The permanent magnetic field is weakened by high currents (uncontrolled switching on). The consequence of this is excessive speed, (i.e. the capacity is lacking in the lower speed range). This effect occurs with destroyed thyristors or diodes, where no FF-fuse is used and with external supply of the motor, where this is fully switched on, immediately.
- Measuring the main motor
- Idling measurement (where possible) with the fitted ammeter.
0.3 - 1 A according to speed for 220-240 Volt
0.6 - 2 A according to speed for 100 - 120 Volt
- Resistance measurement:

Ohmmeter between PIN 2 and 3 of the motor plug, about $2.5 \mathrm{Ohm}(180 \mathrm{~V})$ or $1 \mathrm{Ohm}(95 \mathrm{~V})$.
Possibly about 0.75 Ohm higher due to brush contact resistance.

Note:

Where you turn the motor during the measurement (improving brush contact) you should note that a voltage is induced. In the event of rapid turning the measuring device will be destroyed.

- Earth short-circuit

Ohmmeter between Pin 2 and earth
Pin 3 and earth
No passage should be measurable (measurement with a higher voltage, e.g. $>100 \mathrm{~V}$, is recommended).

Control of the Carbon Brushes on Main Motor

Before checking the carbon brushes, draw out plug to cut of power supply.

Worn off carbon brushes damage the anchor lamellas and may destroy the main spindle circuit board by brush firing.

Control of carbon brushes:

After 100 hours of operation.
A new brush is approx 20 mm long.
When a length of only 6 mm is left, then it must be replaced.

An unregular wear of the 2 carbon brushes is a typical characteristic of a direct current permanent motor.

Swap unregular weared brushes if they are long enough.

5.1.4. Tool reverser motor (only COMPACT 5 CNC)

- This motor is a bell-anchor permanent magnet motor, with attached gearing.
- Measuring the tool reverser motor:
a) Resistance measurement with the ohmmeter between X8/ Pin 1 and 2 of the tool reverser motor plug: about 11 Ohm

Note: Since the brush passage resistance changes, repeat the measurement several times. Inbetween, turn the motor slightly.
b) Current and voltage measurement: Unsolder X8/Pin 1 on plug and connect the ammeter inbetween. Clamp the voltmeter between X8/Pin 1 and 2.

Measured values:

Forward run $13.5 \mathrm{~V}, 290 \mathrm{~mA}$
Return run $3.25 \mathrm{~V}, 100 \mathrm{~mA}$
Return run stop $3.25 \mathrm{~V}, 280 \mathrm{~mA}$
Please note that the polarity changes between forward and return run.

Motor defective

```
5.1.5. Chip door limit switch (only F1-CNC special
    version)
```

This limit switch is a safety limit switch, i.e. there is forced opening of the contacts.
It is connected as a closer.

Functional check:
Remove plug X8 and clamp an ohmmeter (or continuity tester) to Pin 3 and 4.
Where the chip door is closed, the ohmmeter must indicate a passage of about 0 Ohm. When the chip door is open, the passage is interrupted.

```
5.2 Internal components - sources of defects
The following pages indicate the flow of data and the power
supply paths.
The measuring instructions for the individual pc-boards,
specified in the "fault,repair" chapter, are specially
listed here as measuring points.
```


Functions:

- Command information via keyboard
- Memory of the machine program (EPROM) and the workpiece program (RAM)
- Display via display
- Transformation of input and stored values (from path in steps)
- Computation work
- Synchronisation of angle position of the main spindle with step motor
- etc.

Query of position of the inch/metric changeover (X45)

Axis output Y-axis (only F1-CNC)

5.2.2. Step motor board

Functions:

- Transforming 5V current step informations from CPU into 10 V .
- Transmission of 10 V impulses and 40 V needle impulses to step motors.
Explanation:
10 V is normal voltage for the step motors. The 40 V needle impulses are necessary to overcome the inertia of the step motors when they run with high speed.

Measuring points: Compact 5 CNC X33/Pin 1 and 310V

5.2.3. Interface board for cassette recorder

Function:

Transforming of digital information of CPU board of EMCO machine code to the code of the Philips cassette recorder.

Function:
Transmit the digital information of CPU board to magnetic tape, resp. reading the information.

5.2.4. Main spindle board

Functions:

A. Control of main motor speed

1. Speed adjustment with control knob
2. Control of adjusted speed under varying load
3. Speed-depending current limit

B. Interpretation of light barrier impulses (only Compact 5 CNC)

1. Transformation of counting impulses of the light. barrier into digital numbers of spindle speeds on main spindle display (rev./min)
2. Improving and passing on the counting and synchronisation impulses to the computer board.
3. 5 V supply for light barrier.

5.2.5 Power pack pc-board

Functions:

- Distribution of the mains voltage
- Generating the required low voltages (5/10/16/40 V)

Meauring points: Low voltages

5.2.6. Fuses

a) Main fuse /fuse on electrical housing

El. control unit F-W
Function: Main fuse
Size for $220 / 240 \mathrm{~V}$: Glass tube fuse

$$
\text { dia. } 5 \times 20,8 \mathrm{~A} \text { slow }
$$

Size for 115V: Glass tube fuse dia.1,4 x 1". 10 A slow
b) Fuses on power supply board A6A 111001 and A6C 111001
-"- 2 -"- 2 F1A/C/V 111000

Size of all fuses, except e7:
Glass tube fuse dia. 5×20
Size e7: Neozed cartridge

c) Fuses on main spindle board

e21	Motor current circuit	$10 \mathrm{~A}, \mathrm{FF}$ (super fast)
e22	Automatic control system	$0,1 \mathrm{~A}$ slow

5.2.7. Video pc-board

Functions:

- Transformation of the memory content (RAM) into a usable form for the screen (monitor or TV).
- Issuance of the memory content (RAM) at the RS 232 interface.

The exact functions and DIN occupancies are comprehensively dealt with in the chapters Video and RS 232.
5.2.8. Tool reverser and DNC pc-board
A) Function with COMPACT 5 CNC:

- Triggering the tool reverser
- DNC interface
- Switching the main motor off and on with the so-called X-output is not wired in the works, although it is functional. The same applies for the input chip protection limit switch.
B) Functions with F1-CNC:
- DNC interface
- SWITCHING the main motor OFF and ON
- Tool reverser triggering is not used for the F1-CNC.
- Input chip door limit switch

More comprehensive information in the chapter DNC interface


```
Measuring points:
X61, Pin 2 and 9 ...... Switch function mains potential MP39
X62, Pin 25 and 26 .... 5 V
X62, Pin 22 and 26 \ldots.. 10 v}}}\mathrm{ MP40
X63, Pin 1 and 3 ...... 10 V MP18
X64, Pin 1 and 2 ...... Voltage tool reverser motor 
                            See details in chapter 5.1.4.}\mp@subsup{}}{\mathrm{ MP16}}{
X64, Pin 5 and X63, Pin 3 (GND) ....... 5 V
X68, Pin 1 and 2 ...................... 5 V MP17
```


5.2.9. Measuring points of the electrical control

Notes:

a) The safest source of supply voltages is obtainable from X11 of the power pack pc-board (start from there when trouble-shooting).
b) Please note, that the 5 V supply voltage runs over several pc-boards. That means, e.g. when you unplug X44, the computer pc-board, video pc-board, interface pc-board and tool reverser pc-board are without 5 V supply.
c) Attention: When measuring mains potentials, carelessness can drag voltage to the low voltage side. This could then destroy all the pc-boards.
d) Most measuring points are precisely described in the previous chapters. To find wiring defects, the following measuring points may be useful:
e) Please note that the measured voltage can be higher where there is a lack of load (motors without current, etc.).
Instead of $10 \mathrm{~V}-13 \mathrm{~V} / 16 \mathrm{~V}-24 \mathrm{~V} / 40 \mathrm{~V}-44 \mathrm{~V}$

Potential
a) Main switch a1, Pin 1 and 3 a1, Pin 2 and 4
b) Main fuse e8
c) Input terminal XI, Pin 1 and 2
d) Lighting connection h1
e) Emergency Off pushbutton b1
f) Socket X2 and X3
g) Input terminal X1, Pin 5 and 6
h) Blower connection m2 X11 Pin 9 and 10
i) Main motor switch b2, Pin 5 and 3
b2, Pin 4 and 6 ($\mathrm{F} 1-\mathrm{CNC}$)
$\mathrm{b} 2, \mathrm{Pin} 1$ and 3 b2, Pin 2 and 4

Main motor switch b2, left side (COMPACT 5 CNC) b2, right side

Main motor switch b2, Pin 1 and 7 (COMPACT 5 CNC France version)
b2, Pin 2 and 8
b2, Pin 5 and 6
j) Ammeter g1
k) Choke m3 (COMPACT 5 CNC) m4 (F1-CNC)

1) Choke c1, Pin 1 and 3 c1, Pin 2 and 4

Mains input MP1
Mains output MP2
Passage mains
Mains to machine MP19
Mains MP3
Passage mains MP20
Mains MP27
Mains to machine lamp MP19

Mains MP4
Mains input direct
Mains output direct
Mains input CNC MP28
Mains output CNC
Mains passage
10 V passage
MP29

Mains input
Mains output
MP30
10 V passage

Mains passage MP31
Mains passage MP32
Mains passage
Mains input
Mains output
MP33

Cnapter 6
 Notes on frequent fault sources

6.1. The most frequent source of fault is that of the chip problem. The symptoms extend from software breakdown to short-circuits between the voltages.

The chips are distributed between the IC feet, in the cassette deck (front and back) as well as throughout the control box.

The remedy is: Remove all pc-boards (including the cassette deck) and clean with compressed air (visual inspection). Suction away all chips which remain in the electrical control box.
6.2. Faults in connection with the computer pc-board. Symptom: Software problems, display dark, etc.

- The keys bounce or are oxidized (exchange the computer pc-board).
- The supply plug X44 has a loose contact or a transition resistance (less than 4.9 V at the CPU) due to oxidation (replace plug, clean contacts).
- The plug strips on the computer pc-board are the wrong way round compared with the new board on machines with serial numbers below 300 (COMPACT 5 CNC). Accordingly, insertion must be the other way round, where a new computer pc-board is fitted.
- Where software problems arise at lower temperatures, an additionally soldered ceramic capacitor can be of assistance (see the diagram on page 6.5).
6.3. Faults in connection with the power pack pc-board. Symptoms: Problems with the software supply, software breakdown.
- Lack of the 10 V , fuse e7 (16 A) is loose. Remedy: Tighten.
- On machines below No. 2720 (COMPACT 5 CNC), due to induced peak currents when the main motor is switched off and on, defects can occur on the main motor pc-board (see Service Information, page 6.4).
- On COMPACT 5 CNC machines below No. 300, fuse e2 burns through when a new power pack pc-board is fitted. This is normal. Please remove the fuse.
- Loose contact and oxidation on plug X11. Remedy: Bend contact springs and clean contact.
- Where fuse e6 (16 A) is burnt through, the 5 V in the control will also be missing.
6.4. Faults in connection with the step motor pc-board.
- On machines COMPACT 5 CNC under No. 300, plug X33 burns out (also carbonization or deformation). When replacing the plug or exchanging the step motor pc-board, change the plug to 5 pole.
- Frequently, problems with the step motors are due to mechanical faults. Symptom: Loss of steps. The feed spindles move with difficulty.
- Check: You must be able (with some force), to move the slide (only with motors G64 switched off) by hand.
6.5. Problems with the cassette deck.
- Chips (see item 6.1.)
- On machines COMPACT 5 CNC below No. 300: Weak power supply, trial by $G 64$ input and new attempt. Remedy: Exchange the power pack pc-board.
6.6. Problems with the main spindle pc-board.
- Power diodes burnt through. Symptom: Short-circuit
- Power thyristors burnt through. Symptom: Main spindle motor cannot be controlled, runs at highest speed.
6.7. Problems with extensions.
- Plug connections made offset by one pin.
- Plug connections made the wrong way round.
- 10 V connection of tool reverser pc-board the wrong way round. In this case, the Zener diode burns through at the 10 V input of the tool reverser pc-board.
Remedy: Correct the connection and remove the Zener diode.
- When installing, the tool reverser pc-board, ensure that the heat sink of the interface pc-board does not touch the tool reverser pc-board.
- Where the tool reverser motor fails to operate properly, remove the motor, place grease in the free bore of the tool reverser and reattach the motor. Important: Tighten lightly and uniformly.

COMPACT $5 \mathrm{CNC}, 220 / 240$ volt, F,G,S Ausführung

Eine Untersuchung hat ergeben, ciab beia Aus- und Einschalten des Hauptmotors induzierte Spitzenstrome auftreter. kónnen, die zu einem Defekt auf der Eauptmotorplatine führen kónnen.

Maßnahme:

Einloten des Kondensators $0,1 \mu \mathrm{~F}, \mathrm{E} 30 \mathrm{~V}$, parallel zum Primaranscinlus cies trafos auf der Netzteilplatine. Der Rencensator nimmt die gefăhrlichen spiczenstrōme auf.

Maschinen mit Steuerungsseritanimer 0-299 (Netzteilplatine hóa/3 111 (00)

Kein Einloten des Xondensators erforderlich.

Maschinen mit Steuertossseriennimeer 300-1499 (Netzteilplatine A5i 111 O-1)

Kondensator zwischen Pin 1 wrd Pin 5 oder Pin 1 und P in 8 einloter.

Maschinen mit Steuerinosseriennimery 1500-2720:

Kondensator zwischen Pin 1 urd Pin 4 einlơten

Compact $5 \mathrm{CNC} / 220 / 240$ Volt Versions F, G, S

When switching on and off the main motor inductive peak currents could disturb a diode on the main epindle board.

Measures:

Solder the condenser 0,1 رF 630 V parallel to the primary winding of the transformer. This condenser takes the peak current.

Machines with control unit serial no. oo-299:
No condenser must be soldered
Machines with control unit serial no. $300-1499$
Solder condenser between pin 1 and 5 or
pin 1 and 8.

Machines with control unit
serial no. $1500-2720$
Solder condenser between pin 1 and 4.

We: terer Hinweis

Die 2 Kabel (Phase L und Mittelpunktsleiter N) funren von der Nefrbuchse (1) auf die Pins zur príārseite des tráos. Zwischen diese Pins mub der Kondensator eingelótet werden.

- Steuerungsseriennummer 300-i499 zwischen 1 und 5 oder 1 und 8 (siehe kabel von klemzuchse)
- Steuerungsseriennumer 1500-2720 2wischen 1 und 4.

Additional tip_

The two wires (Phase L and neutral wire N) go from the clamping socked((1) to the pins of the primary circuit of the transformer.

The condenser has to be soldered between phase L and the neutral wire N.

This is with

- control serial no. 300-1444 pin 1 and 5 or 8 .
- control serial no. 1500-2720 between pin 1 and pin 4.

Service remarks:

Symptom:

At lower temperatures (below about $5^{\circ} \mathrm{C}$), the following occurs: The machine software breaks down. This can cause the most diverse faults (hanging of the computer, changeover manual/CNC no longer possible, etc.).

Cause:

One capacitor is fitted in a series of pc-boards A6. 114003 and F1. 114000 , which have excessive capacity loss at lower temperatures.

Remedy:

Solder a second capacitor of the same type parallel to the 470 pF ceramic capacitor.

Section AB

Repair note

The ceramic capacitor 470 pF must be connected in parallel to the already existing ceramic capacitor 470 pF.

Cnapter 7

Expansion, accesories, extension

For Compact 5 CNC and FI CNC more expansions and accesories are available. Look chapter 8 . There you find notices if the generation of your machine is suitable for expansion resp. how you can get your machine on the latest state of engineering.

In following the instructions for:
7:1 extension video
7.2 extension RS232 and connecting cable
7.3 extension turret toolholder Compact 5 CNC
7.4 extension DNC Interface Compact 5 CNC
7.5 extension DNC Interface F1 CNC
7.6 extension heating device
7.7 extension door-limit-switch F1 CNC

1.1 Extension video

In following the installation instruction. Pay attention on frequency setting.

EMCO machines deliver a fixed signal, therefore you should check the following if you have a bad picture.

1. Set exactly the receive frequency on your TV resp. check the controlers of the picture (contrast, brightness etc.) Does your TV work well on local TV station?
2. Check if the right input socket is chosen on Monitor (video-in-signal)
Check contrast and brightness.
Adjust horizontal deflect and vertical deflect,by moving picture.
3. In most cases bad connection cables resp. bad contacts with the connection plugs are responsible for a flickering picture.
(Clean plugs with an anti oxident medium, intensify spring tension of contacts.)

Video Connection
 TV-Connection Interface RF 232

1. Mounting possibilities of Videoprint
1.1. COMPACT 5 CNC with electrical serial numbers A6A/B/C 105.000 / 000-049:

No connection possibility!
1.2. COMPACT 5 CNC with electrical se-
rial number $A 6 A / B / C / F / G / H / N$ 105.000 / o50 - 618:

Means: \quad Computer board A6C 114002

Videoprint (Ref.No. 260 200)

1.3. COMPACT 5 CNC with electrical se-
 rial number $A 6 A / F / G / H / N$
 $105.000 / 619$ upwards:
 Means:
 Videoprint Ref.Nr. 260200
 (The computer board A6C 114 OO2 is mounted)

2. Equipment of Videoprint (Ref.No. $260 \quad 200$)

1 Videoboard (A6A 115000)
2 Cable RS 232 (A62 201 000)
3 Coupling plug RS 232 (ZEL o3 oo12)
4 TV-cable (A6Z 202 000)
5 TV-coupling plug (ZES 15 1006)
6 Video cable (A6Z 203 ooo)
7 Spacing bolt (ZBO OO 6256)
8 Washer (ZSB 51 0315)
9 Key for tightening cable couplings (A6Z 200 olo)

4.3. Mounting the cables:

Insert the cables through the bores. Fix the cables with the counter nuts and plug them to the video print.
Electrical control unit $A 6 A / B / C$

Electrical control unit $A 6 F / G / H / N$

5. Setting language and frequency on the video board

Language and frequency are set with the code switch (1).
5.1. Frequency setting:
50 Hz : switch 2 "ON"
60 Hz : switch 2 "OFF"
Illustration shows position for 50 Hz
5.2. Languages are set with switch 3 and 4.
Combinations

Language	Switch 3	Switch 4
German	OFF	OFF
English	OFF	ON
French	ON	OFF
Spanish	ON	ON

Illustration shows switch positions for German.
Note:
The first switch is without function. The change of language appears when the machine is switcred off and on.

a) 20 mA Interface:

Connection to Teletype ASR 33
(Duplex operation, 1lobd.)

b) V24 Interface:

Connection to printer, paper tape recorder/paper tape puncher etc.

COMPACT 5 CNC Accessory

f. ex. paper tape puncher

Note: If pins H and J are not used they must be jumpered.
tape reader
Activating RS 232:

7.2 Removal RS 232 Interface

The installation instructions are the same as in 7.1. Video Removal, since the RS 232 is located on the same pc-board.

With the RS 232 interface, you can transfer the workpiece program, which is located on the COMPACT 5 CNC or F1-CNC, to a peripheral device (printer, paper tape reader, computer), or vice versa. Information on data transmission is given in the following instructions for the accessory RS 232 connection cable.

Please also note the differing record structure of the COMPACT 5 CNC and F1-CNC.

The $\%$ sign is for the start of the data transmission. The Mod. " sign is for the end of the data transmission.

Several \emptyset signs should be set before and after the transmission.

RS 232 C Connection Cable for COMPACT 5 CNC and F1-CNC

The only "handshake line" of the COMPACT 5 CNC and F 1 -CNC is intended for the "request to send" (RTS) signal. The RTS core is connected to pin 5 of the 25 -pin plug. The Interface of the COMPACT $5 \mathrm{CNC} / \mathrm{F} 1-\mathrm{CNC}$ does, however, function without the request to send signal.
(A handshake line is a control line for the data flow. It releases or stops a transmission)

Notes in the event of problems with Interface RS 232 C

Since the COMPACT 5 CNC and the $\mathrm{F} 1-\mathrm{CNC}$ do not depend on a handshake line, you can presume that the transmission and reception mode will be carried out (simple design of the Interface on COMPACT 5 CNC and $\mathrm{F} 1-\mathrm{CNC}$).

Trouble-shooting in the event of problems

1. Check whether the peripheral device actually has a RS 232 Interface. That is a BIT serial Interface and not a BYTE serial, such as Centronics or IEEE 488.
2. Check whether the $V 24$ or 20 mA Interface on the peripheral device is active.

Pin occupancy RS 232 Interface:

Plug Pin E	Baud rate	open to GND
		300 bd.
	110 bd.	

If you use the 20 mA connection, open bow contact H / J and note the baud setting.
3. 110 or 300 baud rate: Check setting on peripheral device and COMPACT 5 CNC or $\mathrm{F} 1-\mathrm{CNC}$.

With the EMCO cable, the COMPACT 5 CNC/F1-CNC is set at 300 baud (Pin E not with Pin C - GND - with bow contact).
4. The Interface of data receiver (e.g. printer, PC ...) must be equipped with a buffer memory (due to the lack of handshake signals of the COMPACT $5 \mathrm{CNC} / \mathrm{F} 1-\mathrm{CNC}$).
5. Check the pin occupancy TRANSMIT and RECEIVE.

Transmit: From COMPACT 5 CNC/F1-CNC to peripheral device (the peripheral device is the receiver).

Receive: From the peripheral device to COMPACT 5 CNC/ F1-CNC (the peripheral device is the transmitter).

Pin occupancy of the cable:

COMPACT 5 CNC
F1-CNC

Peripheral device
F1-CNC

6. Check whether your peripheral device is operating without the cabling of the handshake line, or if the handshake lines must be functionally disconnected (bow contact, DIL-switch, etc.)
7. Transmission from COMPACT $5 \mathrm{CNC} / \mathrm{F} 1-\mathrm{CNC}$ to the peripheral device: the COMPACT 5 CNC/F1-CNC transmits 7 bit ASCII code. The eighth bit is intended as parity bit, which is not, however, transmitted.
In the event of reception, a parity bit can be transmitted, although it is not required and is disregarded by the COMPACT $5 \mathrm{CNC} / \mathrm{F} 1-\mathrm{CNC}$.

At 110 baud, one start bit and two stop bits are transmitted.
At 300 baud, one start bit and one stop bit are transmitted.

Peripheral device remarks, control lines

The control line connections differ according to the device. Please note the instructions.

- Where the peripheral device requires control lines for operation, the clear to send (Pin 4) can be connected with the request to send (Pin D) of the COMPACT $5 \mathrm{CNC} /$ F1-CNC.
The second possibility would be, to bow connect Pin 4 and Pin 5.

- There are also devices which require the additional signal "Data Terminal Ready". This signal can be generated by bow connection of P in 6 and 20 .

Example of a connection:

$4 / 5$ bow connected
6/20 bow connected
C/E bow connected (setting at 110 baud).
1

Data formats COMPACT 5 CNC／F1－CNC

You can also obtain the data format by printout of a
punched tape．

Data format COMPACT 5 CNC for RS 232 Interface

1234567390123456789012345673903132
\％CR LF

 t＋tNO2tGO2tKー＋500tて†t＋t＋t＋Ft＋2 CR LF †＋tNO3 TGO3

 †t tN08 tヶtNOStGB4tどーナt＋2t2tttt＋4tFt＋4 CR LF
 Tt＋N11＋Gこの只t＋t＋t＋2t＋t＋t＋tF＋t＋CR LF
 †＋穴

| CR ．．．Carriage return | ASCII＝13 |
| :--- | :--- | :--- |
| LF ．．．Line feed | ASCII $=10$ |
| \uparrow ．．．Space | ASCII＝32 |
| M.. Metric program | ASCII $=77$ |
| ＂．．．Inch program | ASCII＝34 |

When programs are received，the data format must be fully retained，otherwise the programs will not be correctly stored．

\because CR LF	
	CR LF
	CR LF
	CF. LF
	CF. LF
	GF. LF
	CF: LF
	CR LF
	CF. LF
	CR LF
†t+MI	CP LF

4	Space	
-	Apostrioph	
CR	Carriage Return	
LF	Line Feed	
-	(Minuszeichen) Waagrechtfräsmaschinenprogrammierung	Minus sign / Horizontal programming
I	Senkrechtfräsmaschinenprogrammierung	Vertical programming
"	Zoll-Programmierung	Inch programming
M	Metrisch-Programmierung	Metric programming

7.3° Removal tool reverser (only COMPACT 5 CNC)

The installation instructions for this accessory are given below.

Please note the following:

- Do not exchange the + and - 10 V connection.
- Do not connect offset the connection plugs (6/12/16 pole).

The DNC interface is also located on the tool reverser pc-board of the COMPACT 5 CNC. See also chapter 7.4.

Automatic Turret Toolholder COMPACT 5 CNC

Necessary Equipment

1. CPU board A6C 114003 (for machines with with electrical control serial no. below 2500)
2. Automatic turret tollholder ref. no. 260 04o
3. Chip guard A6A 140001 (for electr. contr. unit no. below 2500)

Mounting work

- Mount CPU board
- Make slot for cable in chip pan
- Mount turret circuit board
- Connect 10 Volt power supply
- Mount plug connection
- Mount automatic turret toolholder

Attention:

+ Before mounting displug main plug! Not only danger of accidents but also possibility of disturbing electronical parts on the boards.
+ Never plug or switch on machine before all plugs on the board are fitted and the boards are mounted firmly.

Loose cables and boards could cause short circuits if they get a contact with other boards or the electrical housing.

Basic equipment of automatic turret toolholder comprises

1. Automatic turret toolpost

26 Turret circuit board
1F:
3. Cable 16 poles for CPU board
4. Cable 6 pole
5. Cable for power supply 10 V
6. Plug cable
7. Distance pins
8. Washers for adjustment of tools
9. Cable clips and cable binders
10. Special key and hexagon keys.

Potentiometer on turret circuit board

Potentiometer on turret circuit board
Check that the actual number of swivels is identical with the programm number (in hand-operation).
Caused by the different frictions of the toolholder it might be possible that too much or too less swivels are executed.

Measures:

1. Too much swivels:

Turn the potentiometer clockwise.
2. Too less swivels:

Turn the potentiometer counterclockwise. Check number of swivels 1 to 6 .

Operating the Turret Toolholder

1. By hand:

Press key FWD and a number key, the turret will swivel by the number on the number key pressed.
For example: you press [FD and [2; the turret swivels twice.

2. Swivelling in CNC-operation:

$\mathrm{G} 26 / \mathrm{X}=0 / \mathrm{Z}=0 / \mathrm{F}$.
Put in the number of positions to be swivelled under address F.
For example: $\mathrm{G} 26 / \mathrm{X}=0 / \mathrm{Z}=0 / \mathrm{F}=2$: the turret swivels by 2 positions.

Interrupting the swivel operation
Press key INP + REV

Cables:

- 16 poles cable (1) on CPU and turret circuit board.
- 6 poles cable (2) on CPU and turret circuit board.
- Mount socket for the connection of the turret into hole for "TV" or "VIDEO". Put cable plug (3) onto turret circuit board.

Note:

Three bores for plugs are privided. If the videoboard is mounted, remove either TV or monitor plug and mount plug for automatic turret toolholder instead of it.
4. 2-pole cable (4) for 10 V supply +10 V and ground (GND) are taken irom the condensor cables.

$4.1+10 \mathrm{~V}$ supply

The $+10 V$ cable is marked with a red point on the condensor. The red point (+10 V) can be either at the right or left side of the condensor.

The +loV connection cable is marked with a cable binder (7) and goes to pin 1 of the plug.

4.2 Ground wire:

The not marked cable comming from the condensor is the grounding wire.

It leads to pin 3 of the connection cable.

Connection:

Insert the cables in the cable connector (5) close the clip (6) and press it together with a plier.
5. Use the cable binders to bind the cables Place cable clips on the bottom of the E-housing and insert cables.

Attention:

Check that the cables don't lock the fan.

Mounting instructions

Preperations

- If there is no slot in chip pan, use file to get slot in order to guide through cable.
- To tighten cable underneath chip pan use cable clip.

Mounting the automatic turret tool post

Dismount intermediate plate from cross slide and mount turret tool post with the 4 socked head screws $\mathrm{M} 5 \times 60$.

Pay attention that no chips will enter into the threaded holes of the cross slide.

Mounting the circuit boards:

Exchange old CPU against new one. (ref.no. A6C 114 oo3) if necessary.

Attention:
The cover foil of the CPU boards has to overlap with the foil of the step motor board in order to protect against chip creeping in.

- Instead af screws on cassette board use distance pins (1). Pay attention that plastic washers (2) are put on.
- Tighten turret circuit board with the hexagon head screws.

[^0]
7.4 Removal DNC - Interface of the Compact 5 CNC
 The DNC interface permits the external input of commands to the machine, enquiry of machine conditions or the transmission of switch functions with the CNC program. For this reason, the DNC interface is divided into outputs, inputs and supply voltages.

ATTENTION:

When using the DNC interface with external voltage sources, the maximum admissible currents and voltages must be noted. In addition, possible potential differences between the devices must be observed. An excessive voltage at a DNC input or output can destroy the complete electronics of the COMPACT 5 CNC (spread of the voltage throughout the 5 V network).

All functions are carried via plug X62 to the tool reverser pc-board.
7.4.1. Outputs

Pin 1: Manual operation status (the machine reports whether it is in manual or CNC operation).

In CNC operation, Pin 1 is LO
In manual operation, Pin 1 is HI

Pin 7: Status program operates (the machine reports whether a program is being processed).

Program runs HI
Program does not run LO

Pin 8: Intermediate stop status (the machine reports whether or not it is in an intermediate stop).

No intermediate stop LO Intermediate stop HI

Pin 15: Alarm status (the machine reports whether or not it is in an alarm).
$\begin{array}{ll}\text { No alarm } & \text { LO } \\ \text { Alarm } & \text { HI }\end{array}$
HI

Output switch functions:
The following functions can be switched through the input of $\mathrm{G} 23 / \mathrm{X}=0 / \mathrm{Z}_{\neq 0}=0 / \mathrm{F}=0$

Input of	Causes on switch output/pin	The condition	Initial condition
G23 X=0	X62/19	LO	L0
G23 X $\neq 0$	$\mathrm{X} 62 / 19$	HI	
G23 $\mathrm{Z}=0$	$\mathrm{X} 62 / 18$		LO
G23 $\mathrm{Z} \neq 0$	$\mathrm{X} 62 / 18$	HI	LO

These 2 switch outputs can also be manually actuated (by manual operation).

The path LED lights up	and pressing the pushbutton	produces at switch output/pin	the con- dition
X	REV	X62/19	LO
Z	FWD	X62/18	HI
Z	REV	LO	

Note:

The function $X-F W D(X 62 / 19 \mathrm{HI})$ is suppressed (i.e. is not possible).
Where $\mathrm{X} 62 / 19$ is set at HI by the program ($\mathrm{G} 23 / \mathrm{X}=0$), this output can be set at LO with REV during the intermediate stop. Where the program continues with Start, X62/19 becomes HI. 2 seconds later, the program then starts with the set following the intermediate stop.

Compare the function of the X output $\mathrm{X} 62 / 19$ with the $\mathrm{F} 1-\mathrm{CNC}$ output MO3/MO5. It would be used for the OFF-ON switching of the main spindle. However, this function is not included in the hardware.

Considerable wiring requirement: The motor switch of the F1-CNC would have to be fitted (ZEL 22 0010; ZEL 22 0020). See the circuit diagrams A13.168-22 and A13.168-71. In addition, the power relay (ZER 826033) must be inserted on the tool reverser pc-board.

Pin 20: Pulse output
With a frequency of 100 Hz , the number of pulses specified with G23/F (HI-LO) are input at Pin 10.

Initial condition: LO
Maximum F-input: 0-499

The program is interrupted during the output time of the pulses, and is then continued.
(For this reason, one can also use G23/F as dwell time $=$ between 0.01 and 4.99 seconds)

Input format for G23:
N. . ./G23/X. . . / /Z./F. . .
i.e. simultaneous input of all 3 functions is possible.

7.4.2. Inputs

Where a voltage of $3-30 \mathrm{~V}$ is applied to the following inputs, the following function is executed by the machine:

X62/Pin 3: Bring machine into RS-232 operation (receive as G66 + INP).

X62/Pin 4: Break off program (function as INP/REV).
X62/Pin 5: Intermediate stop (function as INP/FWD).
X62/Pin 6: Bring machine into RS-232 operation (receive as G66 + FWD).

X62/Pin 9: Bring machine from manual to CNC operation, or vice versa.

X62/Pin 10: When voltage is applied to Pin 10 , the machine changes to intermediate stop. In addition, there is a start interlock (e.g. function protective cover).

Note: This function is also on plug X64/Pin 6. This is where one can obtain the +5 V from plug X64/Pin 5, and thus connect a limit switch (as an opener).

ATTENTION:
Pin 10 only functions, where the wire bridge J4 is removed from the tool reverser pc-board.

X62/Pin 11: Manual traverse X / Z
X62/Pin 12: Manual traverse +/-
X62/Pin 13: Manual traverse command
With voltage on Pin 13, the COMPACT 5 CNC traverses with the set feed (potentiometer), with the axis (Pin 11) and direction (Pin 12) which were preselected.

X62/Pin 17: A start command is actuated by voltage at Pin 17.

X62/Pin 2: The tool reverser indexes, as long as there is voltage at Pin 2 (J 2 must be removed).

X62/Pin 21: When the wire bridge $J 1$ is open, the tool reverser is blocked. When a voltage is applied to Pin 21, one can again index. This function is also on X64/3.
Function, e.g. tool reverser cover.
7.4.3. Supply:

```
X62/Pin 22: + 10 V uncontrolled
X62/Pin 23
X62/Pin 26: + 5 V controlled
```

7.4.4. Examples for the wiring

Example Input Example Output

7.4.5. Notes on the tool reverser pc-board

- Where wire bridge J3 is removed, indexing can proceed during intermediate stop and manual operation.
- There are 3 LED's on the tool reverser pc-board. h1 is alight when the tool reverser lock is open (J1) h2 is alight when the tool reverser swivel is blocked (J2) h3 is alight when the chip protection cover is open (J4)

7.7 Removal chip door limit switch of the Fl CNC

As an additional safety package, the F1-CNC can be equipped with one limit switch, for the following:

- When the chip door is open, a start interlock of the CNC program is actuated.
- With an already running CNC program, when the chip door is opened the program is interrupted (the step motors stand still and the main motor is stopped when the motor switch is set at CNC). The machine is in intermediate stop. When the chip door is closed, start must be actuated, so that the machine can proceed with the program.

Installation is already prepared. The precondition for the function is the DNC interface.

7.5 Removal DNC - Interface (F1 CNC)

```
In following the fitting instruction for these
accessories.
Notice that the connection plugs (6/12/16 polar)
are not overplugged displaced.
The DNC-board is corresponding to the turret
toolholder board of COMPACT 5 CNC. Here the tur--
ret toolholder functions are not wired.
The programm is interrupted during the time of
realising the impulses and is continued afterwards.
(Therefore you can also use G23/F as dwell =
between 0,01 and 4,99 seconds)
Input for G23:
    N../G23/X..../Z..../F....
I.e.You can input all }3\mathrm{ functions simultaneously.
```


DNC Interface F1-CNC
 Ref. No. 770070

Scope of supply

1. PC-board
2. Cable 16-12-pole
3. Cable 5-pole
4. Cable 2-pole
5. Spacer bolt with washers
6. Cable clips
7. Relay

Work to be carried out:

- Assemble DNC-board
- Connect all cables

Attention:

Assembly of the DNC-board

- Replace the cylinder bolts on the cassette board with spacer bolts (1). Ensure that the plastic washers (2) are fitted.
- Fasten the DNC-board with cylinder bolts.
- Plug-in the relay.

Assembly simplification:
First plug-in all cables, then screw the pc-board tight.

Cable:

1. Attach 16 - 12-pole cable (1) to CPU and DNC-board.
2. Attach 5-pole cable (2) to CPU and DNC-board.
3. Attach 2-pole cable (3) from mains board to DNC-board.
4. Remove the 2-pole cable (4) from the cable clip and attach to the DNC-board.

Note:
On 5-pole cable, the side with the 6 cores on the plug must be attached to the CPU, and the side with the 5 cores on the plug must be attached to the DNC-board. Pin 3 of this cable may not be wired (Pin 3 is connected with Pin l, as standard, for this reason, the CPU side has 6 cores). Via Pin 3, the "Start" pulse for the main spindle is transmitted, that comes with the programming of M06/T/O after the issuance of the intermediate stop (danger of injury during manual tool change).

Function of the DNC-board:

1.

- The main spindle can be switched on with MO3 and switched off with MO5 (set main spindle switch to CNC). - See page 7.2 of the instructions.
- A main spindle switched on with MO3, can be switched off manually during the intermediate stop, by actuating the M-switch (e.g. for measuring processes). Where the intermediate stop is interrupted by a start, the main spindle is automatically switched on again', and after a 2 second start delay, the program continues to operate.
- The program end command M30, automatically produces a switching off of the main spindle (additional programming of MOS is not necessary).

2. In and output possibilities of the DNC-interface via the 26 -pole plug X62:
A) Outputs:

Pin 1: Status manual operation (the machine indicates whether it is in a manual or CNC operating mode)
In CNC operation, Pin 1 is LO
In manual operation, HI
Pin 8: Status intermediate stop (the machine
indicates whether it is at intermediate
stop, or not)
No intermediate stop LO
Intermediate stop HI

Pin 7:

Switch functions programmed with
Pin 15: M-commands

Pin 18:

Input of	produces at switch output $/$ Pin	the condition	initial condition
M08 M09	X $62 / 15$ X $62 / 15$	HI	LO
M20	X $62 / 77$	HI	LO
M21	X $62 / 7$	LO	LO
M22	X $62 / 18$	HI	LO
M23	X $62 / 18$	LO	

These 3 switch outputs can also be manually actuated.

Lighting the WEG-LED	and actuating the pushbutton	produces at switch output / Pin	the condition
X	FWD	X 62 / 15	HI
X	REV	X $62 / 15$	LO
Y	FWD	X 62/7	HI
Y	REV	X $62 / 7$	LO
Z	FWD	X $62 / 18$	HI
Z	REV	X $62 / 18$	LO

${ }^{\text {' }}$ Pin 20: Pulse output
Format M 26
N3/M26/H3
At Pin 20 , with a frequency of 100 Hz , the number of pulses given with H is issued (HI-LO).
Initial condition: LO
Maximum H-input: 0-221
The program is interrupted during the output time, and is then subsequently continued.

The main motor is switched on and off with Pin 19.
MO3 - HI
MO5 - LO
Initial condition - LO
The motor is changed over to anti-clockwise rotation with Pin 14. This only functions with the thread cutting pc-board (accessory, in preparation). This anti-clockwise rotation is required for thread cutting cycles G74/G84.

B) Inputs:

Where a voltage of $3-30 \mathrm{~V}$ is applied to the following pins, the following function is executed by the machine:

Pin 3: Bring machine to RS-232 operation (received as G66 + INP)

Pin 6: Bring machine to RS-232 operation (transmit as G66 + FWD)

Pin 9: Bring machine from manual operation to CNC operation, or vice versa.

Pin 10: When voltage is applied to Pin 10, the machine goes to intermediate stop. There is also a start interlock (e.g. protective cover function).
Pin 10 only functions, when the wire bridge J4 is removed from the tool reverser pc-board.

Pin 17: The start command is actuated by voltage at Pin 17.
Pin 17 is not wired to the computer pc-board. See Wiring Note.
C) Supply:

Pin 22: +10 V uncontrolled
$\frac{\operatorname{Pin} 23}{\operatorname{Pin} 24} \operatorname{Pin} 25-G N D$
Pin 26: +5 V controlled
Beispiel Eingang:
Béspiel Ausgang:

3. One opener contact can be connected to plug X64/Pin 5,6 , with the same function as $\mathrm{X} 62 / \mathrm{Pin} 10$ (e.g. sliding door limit switch function). h3 lights up when the chip protection cover is open (J4).

Heating device for control unit
for Compact 5 CNC and F1 CNC

Function: The heating device prevents condensation of water on the boards while the machine is switched off. (Power supply must be plugged)

Electrical Connection:

```
Clamp the brown wire (L) to contact 1, the blue wire
to contact 2 (N).
The green-yellow wire (GND) is clamped to grounding
contact.
```


Chapter 8

Gemerations, retrofitment	
Ofo	d machines
8.1 Generations of the Compact 5 CNC	
Serial No.:	
1-49	1st Generation: Yellow main motor with old main spindle pc-board, interface pc-board fitted in cassette deck, computer pc-board not suitable for extensions, weak power pack, old step motor pc-board, old step motor wiring.
50-299	2nd Generation: Not suitable for extension video and RS-232. Weak power pack, old step motor pc-board, old step motor wiring.
300-618	3rd Generation: Not suitable for extension video and RS-232. Similar in design to the new machines.
619-1499	4th Generation: Suitable for extension video and RS-232. Similar in design to the new machines.
1500-2499	5th Generation: Suitable for extension video.
2500-3539	6th Generation: Suitable for video and tool reverser extension. Absolute value programming, RS-232 and DNC interface software fitted.
3540-	7th Generation: Software as in 5th Generation, TUV tested, design change internally.

8.2 Notes on retrofitment of old machine in accordance with the latest state of the art (only Compact 5 CNC)

Diagnosis Module

To permit the service technician, who is unused to measuring devices, to check through a COMPACT 5 CNC or F1-CNC, the diagnosis module was developed by EMCO.

The following tests are simple to implement, with the diagnosis module:

1. A fuse test (for glass tube fuses - defective or not)
2. The main motor is tested for current consumption.
3. The light barrier pulses are indicated on an LED.
4. The step motors are tested for current consumption.
5. The step motor pc-board is tested for the output pulses.

In principle, you can also test these functions with a multimeter (as described in chapters 4 and 5).

With the diagnosis module, mainly the periphery is rapidly checked through (motors and light barriers).

The diagnosis module can be used for the COMPACT 5 CNC and F1-CNC. However, on the F1-CNC, the step motor test must be carried out in 2 stages (due to the 3rd step motor, initially the $X Z$ motor, then the $X Y$ motor).

DIAGNOSIS MODULE -

IEST INSTRUCTIONS

Function:

Test possibilities:

1. Fuses
2. Main motor
3. Light barrier
4. X- and Z-motor
5. Feed control (step motor board)

In the diagnosis module you find adaptor cables so that the machine versions $A / B / C$ and $F / G / H / N$ can be tested.

Note:
A defect step motor can disturb the step motor board, a defect main motor can disturb the main spindle board.
Therefore, before changing boards, control step motors and main motor.

Plug in diagnosis module and switch fuse switch (2). The light of lamp mode A or B appears.

1. Testing the fuses

Hold fuses to the fuse contacts. With intact fuses the lamp "fuse" lightens.
2. Main motor

- Displug main motor plug from electrical control unit.
- Couple 3-pole plug from diagnosis module with plug of main motor cable.
- Switch on main motor switch (1) on the diagnosis module.
- When the main motor is o.k., the motor must run and the lamp "main motor" lightens.

Note:

If main motor runs and lamp "main motor" does not light, replace main motor, otherwise the main spindle board could be damaged.

3. Light barrier main spindle

- Displug coupling of light barrier on control unit.
- Connect twin cable of light barrier of diagnosis module (one coupling for electrical housing, one coupling for light barrier cable.
- Switch diagnosis module to mode A.
- Switch on main motor: With correct adjusted and functioning light barrier the lamp "light barrier main motor" must blink when spindle speed is slow and light steady when spindle speed has increased.

4. Testing the feed motors X and Z

Attention:

Do not displug X or Z motor coupling when main switch is switched on. The step motor board can be damaged.

Testing:

- Mount the adaptor cables to the X - and Z twin cables of the diagnosis module if required.
- Switch off main switch of COMPACT 5 CNC.
- Displug couplings for X resp. Z-motor (couplings either direct on step motors or on electrical control unit).
- Connect the coupling of the twin cable of the diagnosis module: one coupling with step motor input plug of the step motor, one coupling with the output plug of the step motor of the COMPACT 5 CNC.
- Switch on main switch of the machine.
- Switch diagnosis module to mode A. With intact step motors the lamp "feed motor X and Z " must light.

Note:

The diagnosis of a winding interruption can be quite tricky. In cold condition they can function. After a certain time of working (expansion of winding caused by raising temperature) the winding is interrupted - the motor stands. An unpleasant fault is a temporary short circuit in the windings of the step motor which can appear under thermical alterations. As the step motor board is not short circuit protected, a step motor with short circuit generally damages the step motor board. In such cases replace step motor and check cable for short circuit.

An example:

A customer complains non-function of feed drive. The diagnosis module shows intact step motor and intact step, motor board. After two hours working feed is defect.

Reason:

A winding interruption or a winding short circuit that cannot be diagnosed in cold condition.

Procedure is the same as with points 1-5 of testing the step motors. Then:

- Connect light barrier cable from diagnosis module to COMPACT 5 CNC.
- Switch diagnosis module to mode B.
- Switch diagnosis module to mode hand operation and adjust highest feed ($400 \mathrm{~mm} / \mathrm{min}$).

Test:
a) Inching

Phase

Chapter 10

Notes on Machines below Serial No. 300

(only Compact 5 (NC)
These first generation machines, differ in their electrical design from those of the newer generation. An immediately recognizable external difference is shown below.

In this Service Manual, those places marked \oplus indicate a difference.

Serial No. 1-299

Coupling of the step motor on the step motor

from 300

Coupling on electric housing

In addition, the light barrier plug and the pc-board design differ on this first generation.

Electrical box number

A6 A/B/C 100.000
(coupling for step motor on step motor; step motor cable leads directly to the step motor pc-board)

Spare part numbers:

1. Step motor $X / Z:$ A6A 103000
2. Cable X: ZME 200201
3. Cable Z: ZME 200202
(step motors X and Z are identical. There is no difference in the voltages)
4. Light barrier for main spindle

The light barrier for the $A / B / C$ version differ in the coupling.

Replacement light barriers
For electrical box A6A 100000
A6B 100000
A6C 100000

Spare parts number for light barrier: A6A 108000

Replacement electrical control

Replacement electrical control for $A=\}$ A6S 105000
Replacement electrical control for $B=\}$
Replacement electrical control for $\mathrm{C}=\mathrm{A} 6 \mathrm{~W} 105000$
Since the couplings for step motors X and Z and the light barrier coupling of version $A / B / C$ are different, adapter cable must be used for their connection.

Adapter cable for X motor	Order No. K1L 702000
Adapter cable for Z motor	Order No. K1L 702000

Adapter cable for light barrier Order No. K1H 303000

When reinstalling the repaired electrical control $A / B / C$, the step motors and light barrier are directly reconnected.

Replacement pc-boards

3.1. PC-board numbering

The numbers are either shown on by an adhesive label, or they are embossed.
In addition to the pc-board number, a sequential number is stuck on, it is the sequential serial number (production number).

3.2. Replacement pc-boards

In the machines with the serial numbers $A / B / C$, pc-boards with the final number Zero (e.g. A6A 111 000) are mainly fitted. As replacement pc-boards, only pc-boards of the latest version with the final number $1,2,3 \ldots$ are supplied.

Replacement pc-boards:

- Power pack pc-board: 220/240 V - A/B/F/G/N - A6A 111001 or F1A 111000
115 V - C/H - A6C 111001 or F1C 111000
- Main spindle pc-board: 220/240 V - A/B/F/G/N - A6A 112001 115 V - C/H - A6C 112001
- Step motor pc-board: 220/240/115 V - A/B/C/F/G/H/N A6A 113001
- Computer pc-board: 220/240/115 V - A6C 114003
- Cassette deck with interface: 220/240(115) V - A6F 090000

Note (1): As a replacement computer pc-board, a pc-board with metric/inch changeover will be supplied. When installing this pc-board, the metric/inch selector switch must also be fitted.

\oplus Differences:

```
Page 4.8 - Test main fuse e7
Page 4.9 - No fuse present for the control current cir-
        cuit.
        Use diagrams A13.168-1 and -2.
Page 4.10 - Test fuse e6
Page 4.11 - A13.168-1
Page 4.12 - This effect occurs with the maximum enlarge- ment stage with accessories, where the power pack pc-board A6. 111000 is not exchanged.
Page 4.13 - Fuse e4 - power supply of the main motor can be defective. e21 and e22 not present.
Page 4.16 - A13.168-1
Page 4.17 - Test fuse e1 and e2 A13.168-2
Page 4.18 - A13-168-2
Page 4.22 - A13.168-1
Page 4.24 - No fuse for 16 V circuit A13.168-1
```

Page 5.2	- The main drive differs on machines 1-49. a) Light barrier on motor b) Old main spindle pc-board (A6A,C 112000) c) Smaller motor (yellow, with ventilation) In this case, it is better to exchange the complete main drive (motor + pc-board). A possible adjustment of the motor light barrier could proceed as specified on page 4.4 4.6. For (U6) pin occupancy, see A13.168-1.
Page 5.10	- A smaller motor (250 W) is fitted on machines 1-49. Characteristic: Yellow, with ventilation. See above text.
Page 5.18	- On computer pc-board A6A,C 114000 plug X47 is missing. This pc-board is not suitable for extensions.
Page 5.19	
Page 5.20	- On the older machines, the interface pc-board is connected close to the recorder (smaller design'size).

Page 5.23 - A ring-core transformer is fitted on the power pack pc-boards A6A,C 112000 , which has the winding output wires directly as the connection.

Measuring points on lead out colour: Secondary
$\left.\begin{array}{l}\text { light green } \\ \text { light green }\end{array}\right\}-15 \mathrm{~V}$ ac
$\left.\begin{array}{l}\text { green/brown } \\ \text { green brown }\end{array}\right\}-35 \mathrm{~V}$ ac
$\left.\begin{array}{l}\text { red } \\ \text { brown }\end{array}\right\} \quad 12 \mathrm{~V}$ ac
Connections of the transformer: Primary:
brown 0 V
black 115 V
blue 220 V
yellow 240 V

Page 8.3 - Machines with serial numbers 1-49 can only be retrofitted by replacement of the computer pc-board and the power pack pc-board.

Machines with serial numbers 50-299 are to be treated as specified in chapter 8.2.2. However, the power pack pc-board must be replaced (too weak for extensions).

Page 5.24

Fuses on the power pack pc-board
A6A 111000 and A6C 111000
Design size: Glass tube fuses dia. 5×20

Designation	Function	Amperage
el	10 V power supply	8 A slow
e2	10 V power supply	8 A slow
e3	50 V power supply	4 A slow
e4 (220/240)	Main motor power supply e4 (115)	4 A slow
e5 main motor power supply	8 A slow	
e6	Transformer fuse for primary winding	2.5 A slow

Fuses on electrical box/ Main fuse c7
Size for $220 / 240 \mathrm{~V}$: Glass tube fuse dia. 5×20, 8 A slow
Size for 115 V: Glass tube fuse dia. 1/4" x 1", 10 A slow
Control, service and
Adiustment+ Adjustment of carbon brushes on mainmotor

+ Service and adjustment

1. Exchanging the main spindle bearings
2. Exchanging the countershaft belt
3. Exchanging the countershaft pulley
4. Nut on carrier plate
5. Exchanging the main motor
6. Exchanging the toothed belt, exchangeof step motors
7. Exchanging the lead screw
8. Exchanging the cross slide spindle
9. Gibs on longitudinal slide
10. Tailstock
11. Adjustment of cross slide guidance

EMCO COMPACT SCNC

Control of the Carbon Brusnes on Main Motor

Before checking the carbon brushes, draw out plug to cut of power supply.

Worn off carbon brushes damage the anchor lamellas and may destroy the main spindle circuit board by brush firing.

Control of carbon brushes:
After 100 hours of operation.
A new brush is approx 20 mm long.
When a length of only 6 mm is left, then it must be replaced.

An unregular wear of the 2 carbon brushes is a typical characteristic of a direct current permanent motor.

Swap unregular weared brushes if they are long enough.

Service and Adiustment

1 Exchanging the main spindle bearings

1. Mark the position of the light barrier for easier re-mounting. Dismount light barrier.
2. Take off retaining ring on main spindle.
3. Use plastic hammer to get main spindle forward, apply only gentle strokes until spindle can be drawn by hand. Pay attention that perforated disc will not be damaged.
4. Exchange bearings
5. Assemble again.
```
Attention: Note bearings!
Front bearing: Inside and outside medium
- force fit, i.e. the bearing has to be
pressed onto spindle (inside ring) and
into the bore of the headstock (outside
ring). If you do not have available a
press-on device then you mount the bear-
ings using hammer and bushing (when
mounting bearing onto spindle, press only
onto inside ring, when mounting bearing
in headstock, press only onto outside ring.
Back bearing: Slide fit
```


EMCO Compact 5 CNC

6. Checking the light barrier mounting
6.1. Digital read out of rpm: switch on machine and check whether rpm. are shown on read out.
6.2. Threading: Check of impulse

- Put in program

N	G	X	Z	F
00	78	-200	-2000	150
01	22			

- Slow down rpm.
- Press start - Threading cycle must run
A wrong adjusted light barrier gives wrong.synchronisation impulses so that the start of threading operation is wrong.

Operation not running
Cause: Nc impulse from light barrier.
Only the first X -movement is execu-
ted, then operation is interrupted because computer waits for start impulse.

Measure: Adjust light barrier

2 Exchange of the countershaft belt

- Loosen motor tightening screws, exchange belt
- Press motor firmly down and tighten screws

3 Exchange of countersnaft belt

For this purpose, you have also to take off the motor pulley.

1. Unscrew flat head screw from motor pulley. This screw is secured by "Loctite". For better getting hold of the pulley, press drive belt toge ther.
2. Loosen motor tightening screws, and take off countershaft belt.
3. Take off motor pulley.

4. Take off retaining ring (1) and then countershaft pulley.
5. Fill out space (2) with ball bearing grease.
6. When remounting do not forget to secure flat head screw again with "Loctite".

4 nut on carrier plate

The nut on the carrier plate has to be tightened such that the carrier plate can be swivelled without play. The stud bolt is secured with "Loctite" against torsion. Without this securing, the screw could get loose - thus the carrier plate would not be clamped playfree. This could lead to vibrations and finally to an unsatisfactory surface quality on the workpiece.

5 Exchange of main motor (version without perforated disc)

Draw out plug to cut off power supply.

1. Take off motor pulley (compare before chapter "Exchanging the countershaft pulley").
2. Unscrew motor
3. Loosen motor coupling on the backside of the electrical housing. Press out motor cable from cable clip (1) and draw through cable with coupling.

Motor-version with perforated disc mounted
Same as above, but dismount perforated disc first. The belt pulley is divided into 2 parts, i.e. take off both pulleys.

6 Exchanging the toothed pelt, exchange of step motors

Pay attention!

Step motors X and Z are identical. The COMPACT 5 CNC comes, however, with two different coupling versions. Machines with el. housing ref.no. A6A/B/C 105000 come with the coupling of the cable directly on the step motor. Machines with el. housing ref.no. A6F/G/H/N 105000 came with the coupling on the backside of the el. housing.

Exchange

ATTENTION!
Plug out to cut off power, otherwise the power supply circuit board with machines carrying ref.no. A6A/B/C 105000 may be destroyed.

1. Uncouple motor cable on backside of electrical housing.
2. Press cable through cable clip. Open edge coverage only locally to get cable through.
3. Unscrew step motor together with carrier plate. Mount carrier plate on new step motor.
4. Put pulley into toothed belt and mount motor.
Tightening of belt:
Pressing power onto motor for tightening of belt approx. 30 N (3 kp). If the belt is tightened too firm, the wear off will be too high.

The carrier plate for the X -motor

Take care that carrier plate is mounted onto X-motor the right way. If the carrier plate is mounted upside down then the slide would be blocked in direction Minus X .

7 Exchanging the leadscrew

The reason for a necessary exchange of the lead screw can only be a mechanical shortcoming.
e.g. - Spindle bent, because machine was lifted on spindle

- heavy stroke on right hand or left hand side of spindle bearings.
"Leadscrew complete".
The leadscrew as spare part will come to you as "leadscrew complete", ref.no. ZME 200070 (compare spare parts list): leadscrew, left hand bearings, nut carrier with nuts, right hand bearings.

Dismounting of leadscrew.

1. Plug out to cut off power. Take off motor together with carrier plate.
2. Unscrew flat head screws of spindle cover. Move longitudinal slide to the left, draw through spindle cover.

Tool to use:

Place pin into bore of belt pulley so you can turn the slide into the desired position. You manage better with a selft-constructed key.

Stud distance $=15 \mathrm{~mm}$
Stud diameter $=2,5 \mathrm{~mm}$

3. Unscrew tightening screws for nut carrier (flat head screw M5 x 16 , DIN 91).
4. Unscrew tightening screws for right hand bearing. Draw through leadscrew in Z-direction. The left hand bearing is a sliding bearing.

EMCO Compact 5 CNC

Assembly:

The spindle can be overtightened in \pm direction as well as vertically, if you are not adjusting it correctly.

Bending in X -direction
Right-hand bearing

Left-hand bearing
Bending in vertical direction

1. Loosen socket head screw on left hand bearing. The bearing must be easy to move.
2. Draw in leadscrew. Tighten right hand bearing such that you can still move it by hand.
3. - Move slide to the left.

- Position nut carrier (turn leadscrew)
- Tighten nut carrier, but not too firmly.

4. Positioning of left hand bearing and of nut carrier:
4.1. Wind slide into left hand position. Press bearing body by hand against bed. Tighten nut body. Position nut carrier and spindle in X-direction.
4.2. Tighten left hand bearing body. Its position in vertical direction is determined by the nut carrier.
5. Positioning of the right hand bearing:

Wind slide to the right. The position of the right hand bearing in X-direction and vertical direction is determined by the position of the spindle carrier. Tighten the screws of the right hand bearing.
6. Mount spindle cover and step motor.

SUMMARY

- Position of nut carrier X-direction $=$ determined by left hand bearing. Vertical direction $=$ given
- Position of left hand bearing

X-direction $=$ given
Vertical direction $=$ determined by nut carrier.

- Position of right hand bearing

X -direction + vertical direction $=$ determined by nut carrier.

8 Exchanging the cross spindle

Dismounting:

- Unscrew toolpost plate on cross slide.
- Take off X-motor together with carrier plate.
- Unscrew socket head screws for nut carrier (1).

- Unscrew socket head screws on bearing (2), draw out "cross slide spindle complete" (3).

Mounting:

When mounting the spindle must not be bent, i.e. nut carrier and bearing must be aligned.

1. Wind nut carrier in back position, draw in "cross slide spindle complete".
2. Tighten bearing body (4), but do not tighten screws yet. The bearing body must be moveable by hand.
3. Move cross slide such that nut carrier can be tightened. Tighten nut carrier firmly.
4. Move cross slide forward. Tighten screws on bearing.
5. Mount X-motor.

9 Gibs on longitudinal slide:

These gibs made of plastic (1) are under tension to keep the longitudinal slide playfree.

A bad surface quality of the workpiece could well be caused by worn out gibs and/or gibs where the tension is too low.

Measure 1:
Tighten socket head screws (2)

- Loosen nut carrier Z-slide
- Tighten socket head screws symetrically until longitudinal slide runs playfree, but still can be moved efficiently.

Measure 2:
Exchange of gibs If the gibs cannot be adjusted anymore, they have to be exchanged. Since these gibs as well as the socket head screws are not easy to reach, dismount machine bed.

Dismounting of machine bed

- Uncouple couplings for main motor, X / Z motor and light barrier. Press out cables from cable clips so that cables will not be damaged when bed is lifted.
- The 2 hexagon head screws at the bed and the 2 socket head screws at the gear box have to be taken off.
- The machine bed with headstock, gear box and motor can be lifted.

Mounting of gibs

- Loosen nut carrier Z-slide (3)
- Exchange gibs, slides have to run playfree, but it should still be possible to move it by hand efficiently.
- Mounting of nut carrier, bed and cable.

10 Tailstock

1. Adjustment, if play is too big at handwheel

Clamp tailstock barrel, loosen nut (1), adjust handwheel, tighten nut again.

2. Exchange of tailstock barrel

Protection against torsion (2) of the barrel by a glued stud bolt has to be loosened. After exchange of the barrel secure stud bolt again with "Loctite 242" or with similar material.

11 Adiustment of cross slide quidance

- Unscrew socket head screw for the nut carrier (2).
- Adjust stud bolt (5) such that slide moves playfree but does not clamp.

Chapter 12

Inspection, Maintenance, Service, Replacement, Resetting and Adjustmentwork EMCO F1 CNC mechanical, electrical

+ Transporting the machine
+ Tools for mechanical service work
+ Machines, electrical equipment and electrical box number
+ Machining aluminium, materials
A) Inspection, Maintenance

1. Lubrication
1.1 Guides
1.2 Spindle bearing and spindles
2. Inspecting the carbon brushes
3. Readjustment of the limit for the milling head
B) Service, Replacement, Resetting and Adjustment Work
4. Removal and installation of the main motor
1.1 Disassembly
1.2 Assembly
5. Changing the main spindle bearing
6. Replacing the step motor
3.1 Disassembly of the step motor
3.2 Assembly of the step motor
7. Replacement of the X, Y, Z spindles
4.1 Removal of the X spindle
4.2 Removal of the Y spindle
4.3 Removal of the Z spindle
4.4 Installation of the spindles
8. Readjustment of the slide clearance
9. Measuring the reversal clearance
10. Seizure of the tool

EMCO FI CNC

Transporting the machine

Tools for service work

- Fork wrench size 7, 10, 13, 23
- Screwdriver 3 and 6 mm
- Cross-recess screwdriver DIN 5260, Philips size 2 and 3
- Hexagonal socket wrench size 2 , 3, 4, 5 (2.5. for pc-board exchange)
- Round files
- Dial gauge for setting the slide clearance

Machine weight about 120 kg . The machine should be transported with rods, maximum dia. 33 mm .
Recommended length about 1200 mm .

Note: Special tool:
To turn the spindles, insert a stud in the bore. We recommend the use of a selfproduced journal key.

E-equipment number
E-box number
Serial number

EMCO FI CNC

Machining aluminium,materials

When cutting aluminium, only use easy to cut materials. With material which cannot, or are difficult to cut, jerking, poor surface quality and the formation of built-up cutting edges can occur.

Cuttable types of aluminium:

Frequent trade designation: Torradur B, material number 3.1645.51, material designation $\mathrm{Al} \mathrm{Cu} \mathrm{Mg} \mathrm{Pb} \mathrm{F} \mathrm{38}$, material which has similar good cutting properties.

Cutting tools:
The geometry and quality of the tool are major factors for the cutting behaviour.
Use the correct cutter for the particular materials.

EMCO FI CNC

A) Inspection, Maintenance

1. Lubrication
1.1 Guides

Guideways of longitudinal, transverse and vertical slides should be greased daily with a forced feed lubricator (one lubrication nipple on the vertical slide, two lubrication nipples to the left, below the longitudinal slide).

Oil quality:
Pressure absorbing, corrosion protecting oil with stickslip reduced characteristics.
$73 \mathrm{~mm} / \mathrm{sec}$. (cSt) at reference temperature $40^{\circ} \mathrm{C}$.
.- e.g. CASTROL MAGNA BD 68
This oil complies with Cincinnati Milling Specification P 47.
1.2 Spindle bearing and spindles

Feed spindles X, Y, Z :
The spindles fitted in the machine are greased for life. Where a new spindle is fitted, this must be greased.

Main spindle bearing:
The fitted main spindle bearing is greased for life.
Where the main spindle bearing is replaced, both covers must be covered with depot grease (about $4 \mathrm{~cm}^{3}$), whilst both tapered roller bearings must be greased.

Grease quality:
Grease spindles and main spindle bearings with Klueber Special Grease ISOFLEX LDS 18 SPECIAL A, or a smilarly good grease quality.

EMCO F1 CNC

2. Inspection of the main motor carbon brushes

Disconnect the mains plug, prior to inspection of the carbon brushes.

Worn carbon brushes damage the armature laminations, and can destroy the main spindle. pc-board due to excessive brush sparks.

Inspecting the carbon brushes
Interval: Every 100 operating hours.
A new carbon brush has a length of about 20 mm . The carbon brush must be replaced, at the latest, when the remaining length is about 6 mm .

Uneven wear is a typical characteristic of a direct current permanent motor that turns in one direction.

Exchange the unevenily worn carbon brushes insofar as they still have sufficient length.

3. Readjustment of the milling head limits

Where the milling head is improperly swivelled at the limits, deformation of the limit bolt can occur. The limit can be readjusted.

Readjustment:

Clamp a mandrel (1) in the collet, and measure angularity with gauge or angle (2).

Reset the limit bolt accordingly.

B) Service, Replacement,

Resetting and Adjustment work
 Note:

Disconnect the mains plug, prior to all
service, replacement, resetting and adjustment work (possible accident danger and damage to electronic components).

1. Removal and Installation of the Main Motor 1.1 Disassembly

+ Remove back panel.
+ Unscrew the cable screw plate and unscrew the cable screw union.
+ Seal contacts, unthread cable and remove hose.
+ Unscrew lever (1) (anti-clockwise thread).
+ Unscrew both the front oval-head screws (2).
+ Swivel milling head into the horizontal position.
+ Unscrew both the rear oval-head
+ Unscrew both the front hexagonal socket screws of the eccenter block (4).
+ Unscrew both the rear hexagonal socket screws (5) of the motor plate, remove the motor with motor plate.
+ Unscrew the 4 countersunk screws (6) from the under side of the motor plate.
+ Remove the cover (7) from the motor. screws and withdraw the cover (7).

1.2 Assembly

+ Milling head in the horizontal position.
+ Place cover (7) on motor.
+ Assemble motor plate on motor.
+ Place belt on pulley.
+ Place motor with motor plate and belt held on milling head. Tensioning force for tensioning the main motor belt 6.5 kp (65 N).
+ Screw the motor plate tightly with the two rear hexagonal socket screws.
+ Attach eccenter block and screw down.
+ Screw on cover (7).
+ Swivel milling head back to vertical position, screw the lever and milling head tightly.
+ Install cable of the motor, thread on hose, screw on cable screw unions, fit cable screw plate and reconnect the contacts.
+ Install the back panel.

B) Service, Replacement, Resetting and Adjustment work Note:

Disconnect the mains plug, prior to all service, replacement, resetting and adjustment work (possible accident danger and damage to electronic components).

1. Removal and Installation of the Maln Motor

1.1 Disassembly

+ Remove back panel. + Unscrew both the front
+ Unscrew the cable screw plate and unscrew the cable screw union.
+ Seal contacts, unthread cable and remove hose.
+ Unscrew lever (1) (anti-clockwise thread).
+ Unscrew both the front oval-head screws (2).
+ Swivel milling head into the horizontal position.
+ Unscrew both the rear oval-head screws and withdraw the cover (7).
hexagonal socket screws of the eccenter block (4).
+ Unscrew both the rear hexagonal socket screws (5) of the motor plate, remove the motor with motor plate.
+ Unscrew the 4 countersunk screws (6) from the under side of the motor plate.
+ Remove the cover (7) from the motor.

1.2 Assembly

+ Milling head in the horizontal position.
+ Place cover (7) on motor.
+ Assemble motor plate on motor.
+ Place belt on pulley.
+ Place motor with motor plate and belt held on milling head. Tensioning force for tensioning the main motor belt $6.5 \mathrm{kp}(65 \mathrm{~N})$.
+ Screw the motor plate tightly with the two rear hexagonal socket screws.
+ Attach eccenter block and screw down.
+ Screw on cover (7).
+ Swivel milling head back to vertical position, screw the lever and milling head tightly.
+ Install cable of the motor, thread on hose, screw on cable screw unions, fit cable screw plate and reconnect the contacts.
+ Install the back panel.

EMCO FI CNC

Electrical connection of the motor

2. Changing the main spinale bearing

+ Remove main motor.
+ Unscrew threaded stud (1).
+ Unscrew annular nut (2).
+ Remove pulley (3).
+ Remove feather key (4).
+ Punch out the spindle (5) downward (with plastic hammer).
+ Remove inner bearing rings (6) and external bearing rings (7).

Greasing the bearings

Half fill the 2 covers with grease (depot grease, amount about $4 \mathrm{~cm}^{3}$). Grease taper roller bearings.

Grease quality:
Use Klueber Special Grease ISOFLEX LDS 18 SPECIAL A or a similar grease quality.

Installation:

+ Top up the depot grease (quantity $4 \mathrm{~cm}^{3}$) of the bearing cover (8).
+ Press in outer bearing rings (7) in milling head.
+ Press lower inner bearing ring (6) on spindle.
+ Insert spindle and press on upper inner bearing ring (6).
+ Fit feather key (4).
+ Attach pulley (3)
+ Tighten annular nut (2).
+ Adjust the annular nut (2) until the main spindle bearing is tensioned, free of clearance.
(hit the main spindle with a plastic hammer to prevent tensioning of the spindle and permit clearance-free pretension.)
+ Tighten threaded stud (1).
+ Carry out trial run and check rise in temperature.

Carry out trial run:

Allow motor to run for 15 minutes at 2000 rpm . Temperature should not be higher than $45-50^{\circ} \mathrm{C}$.
At higher temperatures, the bearing will be excessively pretensioned.

EMCO FI CNC

3. Replacing the step motors

The step motor group is identical for the X, Y and Z axis (F1A 103 000).

The cable screw union is threaded (for the Y motor, the threaded cable screw union is functionless). The motor pc-boards are not a part of the step motor group.
A fall brake is additionally fitted on the assembled Z step motor, so that the milling head remains in position, when the step motor is powerless (without it, brake slippage of the milling head is possible).

This brake device must be fitted when a new step motor (see Z motor assembly) is installed.

Note:
Disconnect the mains plug prior to disassembly.

3.1 Removing the step motor

Unscrew the back panel, remove the cable plug, dismantle the leading plate (1), open clip, open cable covering.

Disassemble the particular plate for cable screw union (2). Unscrew the cable screw union for X, Z motor (3).

Removing the motors
To simplify assembly, remove motor with motor plate. Then unscrew motor from motor plate.

To simplify assembly on the X-motor, previously remove the belt protection (4).

On the Z motor:

Fitting the fall brake

+ Unscrew the cover (1) from the defective Z motor.
+ Remove the fall brake (2).
+ Unscrew cover from the new motor.
+ Fit fall brake (2) in new Z motor. Screw the cover on again.
+ Screw motor plate on to the new motor.
+ Attach belt, and screw motor to motor plate. Do not tighten the screws as yet.

Tightening the belt

+ Pressure on motor for belt tensioning: $3 \mathrm{kp}(30 \mathrm{~N})$. Where the belt is subjected to excess tension, accelerated wear is produced. With inadequate tension, the beli will jump over the gearing - the gearing will shear off, tearing is the consequence.
+ Tighten the screws.
+ Fit belt cover on X motor.
+ Fit cable screw union and plate for cable screw union on X, Z motor.
+ Lay cable in cable cover and close cable cover.
+ Fit clip.
+ Fit back panel.

EMCO F1 CNC

4. Replacing the $X-, Y-, Z-s p i n d l e s$

The spindles are only replaced as a group. The group consists of the spindle, nut mount, bearing pedestal and pulley (see Spare Parts List). With the bearing and mounting, ensure that the spindles are not bent. The recirculating ball ways of the nut mount are set in the works.

4.1 Removal of the X spindle

To simplify spindle uisassembly, traverse the X slide as far as possible in the X direction.

EMO FA CNS

1

+ Unscrew the cheese-head bolts M5 x 25 (1) on the bearing pedestal.
+ Unscrew the hexagonal bolts M6 $\times 12$ (2) for the nut mount.
+ Withdraw the spindle (3).

Note:

To simplify spindle diassembly, traverse the Y slide as far as possible in the Y direction.

+ Remove back panel.
+ Unscrew the oval-head bolts M6 x 10 (2) for protective sheet 2 (3) and push back the protective sheet.
+ Unscrew the cylinder bolt MS $\times 25$ (4) on the bearing pedestal.
+ Unscrew the cheese-head screws M6 x 12 (5) for nut mount.
+ Pull out spindle (6).

4.3 Removal of the Z spindle

Note: When the step motor of the Z spindle is removed, the vertical slide could slip away (the ball circulating spindles are not selflocking).

For this reason, securely support the vertical slide in the upper position, prior to disassembly of the step motor (also installation aid).

+ Disassemble the milling head with main motor (unscrew the hexagonal nuts M8 (1) and pull off the milling head).
+ Deposit the milling head so that no damage can occur.

+ Unscrew the oval-head bolts M6 $\times 10$ for holding plate 2 and remove the holding plate (3).
+ Unscrew the oval-head bolts M6 x 10 for scraper plate (2) and remove the scraper plate (4) with scraper felt (5).
+ Unscrew the cheese-head bolts M5 x 25 (6) for bearing pedestal.
+ Unscrew the cheese-head bolts M6 x 20 (7) for nut mount and pull out the spindle.

EMCO F1 CNC

4.4 Installation of the spindles

Prior to installation, grease the spindles with Klueber ISOFLEX LDS 18 SPECIAL A, or a similar quality product.!

Installation of the spindles
The spindles may not be tensioned during installation.

Consequences of tensioned spindle installation
Rapid wear, damage (the balls break out).

Possibilities of tensioning with the X spindle as an example
1

Tensioning in level 1
(plan view)

Tensioning in level 2
(front elevation)

EMCO FI CNC

To prevent tensioning of the spindles during installation, the following procedure generally applies
(X spindle example)
*

> Thread spindle, screw bearing pedestal (2) with cheese-head bolts M5 x 25 (3) firmly, so that it is centrically placed in the milling out.

+ Screw the nut mount (1) with the hexagonal bolts M6 x 12 (4) firmly.
Move slide or adjust nut mount so that it can be fastened with the hexagonal bolts.
+ Crank the slide completely to the right.
Keep the distance between the nut mount - bearing pedestal, as small as possible.

It is now possible that the spindle is tensioned in the elevation (level 2).

Remedy:

+ Loosen the bearing pedestal hexagonal socket head screws (3), which will cause the spindle to align'itself in level 2.

Retighten the cheese-head bolts
(3) of the bearing pedestal.

Possibility:
Spindle tensioned in Level 1

For this reason:

```
+ For safety, again loosen the bolts of the nut mount
    and then retighten.
    (possible tensioning of the spindle in Level 1)
+ Refit the other removed parts.
```


Note:

When fitting the Group Y spindle, the new spindle bearing may project at the semicircular edge. In this case, file the phase.

Reason: The spindle bearing was subsequently improved (more rigid spindle bearing).
Accordingly, the design has become larger. Replacement spindles are only supplied in the more rigid version.

EMCO F1 CNC

5. Readjustment of the slide clearance

+ Readjust the slide guides after extended use.
+ The wear of the guides on the X, Y, Z slides can differ considerably, since the load normally differs on the slides.
+ Slides with excessive clearance, can cause jerking during machining.
+ The clearance is set with two taper gib strips each per slide.

Checking the guide clearance of the X, Y, Z slide

Structure of the gauge:

The slide clearance is measured on both sides of the particular slide, and should not exceed 0.015 mm . During clearance measurement, the slide is swivelled to and fro at the particular measuring point, with a swivel force of 100 N (10 kp).

a) X slide . .

Gauge on Y slide (If the gauge were fixed to the base, the Y clearance would also be measured)

c) Z slide

Gauge on measuring table (remove milling head)

b) Y slide

Gauge on base

The gauge is only applied at the front, since the slide is guided at the rear by scraper felt.

EMCO F1 CNC

Readjusting the taper gib strips

The slide clearance is readjusted with the appropriate taper gib strips on the slide.
The guide way of the taper gib strip, as well as the taper gib strip, are conical.
By screwing in the tapped stud (size 2.5), the taper gib strips are moved in the direction of the arrow. The clearance is reduced.

Process:
Readjust the tapped stud slightly.
Measure the slide clearance with a gauge.
Repeat process until the measurement obtained is 0.01 to 0.015 mm .

Attention:

Where the taper gib strips are excessively readjusted, the table will be clamped or will be very difficult to move.

The torque of the step motor could then be inadequate for traversing the slide. The step motor could lose the steps (feed force of the step motor is about 1000 N (100 kp).

For this reason, unscrew the slide from the appropriate nut mount, and move slide backward and forward by hand (see page 6.18).

Position of the taper gib strips

X taper gib strips
The taper gib strips on the X slide are freely accessible.

Y taper gib strips
Remove protective plates 1 and 2.

Z taper gib strips
Remove the scraper plates and scraper felts on both sides of the slide.

To measure the slide clearance, unscrew the slides from the nut mount. Move the slides to and fro by hand. The movement force should not exceed 150 N (15 kp).

X slide:
Unscrew both hexagonal bolts M6 x 12 (1).

Y slide:
Remove the protective plate 2 (3) and unscrew the hexagonal socket screw of the nut mount (2).

Z slide:

Remove mounting plate (4), scraper plate
(5) and scraper felt
(6), and then unscrew both hexagonal socket screws of the nut mount (7). (Support Z slide!)

EMCO FI CNC

6. measuring the reversal clearance

In addition to the slide clearance, the reversal clearance is important for operating accuracy. The reversal clearance arises when traversing the slide, e.g. + direction to - direction. In this case, the control indicates a traverse path, however the slide does not actually traverse (dead path). The reversal clearance is measured about $5-30 \mathrm{~mm}$ prior to both the limit positions of the particular slide, and should not exceed 0.08 mm .

Measuring the reversal clearance

+ Fasten gauge with magnetic base.
+ Move slide to gauge.
+ Set gauge at 0 .
+ Set display at 0 .
+ Move slide about 1 - 2 mm toward the gauge (gauge and display indicate the same traverse path).
+ Move slide with control back to 0 .
+ Read off difference ($=$ reversal clearance) on the gauge.
+ Repeat process for the other limit position of the particular slide.

Attention: Relationship slide clearance - reversal clearance
The stronger the setting of the guide strips, the smaller the slide clearance will be, and the larger the reversal clearance.

Accordingly, the slide clearance and reversal clearance must be jointly adjusted. The particular tolerances for slide clearance and reversal clearance, must not be exceeded.

EMCO FA CNS

Adjusting the reversal clearance:

By loosening the taper gib strips, the reversal clearance can be reduced (this will enlarge the slide clearance).

Where the reversal clearance remains the same, despite loosening the taper gib strips, check the pretension of both the ball reversal bearings of the nut mounts of the particular spindle.

Setting the ball circulation bearing pretension of the nut mount:

By clockwise rotation of the setting ring (2), the ball circulation bearings are given stronger pretension.

To adjust the ball circulation bearings, complete removal of the spindle unit is required.

However, this setting will hardly be required, since no wear occurs and the pretension is set in the works.

Procedure:

+ Unscrew the tapped stud (3) with screwdriver size 3 (1).
+ Screw in the tapped stud (4) with screwdriver size 3 (1). This will turn the setting ring (2) in the direction of the arrow.
+ Retighten the tapped stud (1) (position locking of the setting ring).

Attention:

With excessive resetting of the setting ring, breakage of the balls in the ball circulation bearings can occur.

X slide

Gauge on the Y slide

Y slide
Gauge on the base

Z slide
Gauge on the table

Seizure of the tool

Cause:

+ Excessive thermal expansion (the spindle bearing may be excessively pretensioned).

Remedy:

+ Allow tool to cool (possibly cool with compressed air).

Reduce the bearing pretension:

+ Remove main motor.
+ Loosen tapped stud (1).
+ Slightly loosen the annular nut (2).
+ With a plastic hammer, gently tap on the spindle (so that the excessively pretensioned bearing relaxes slightly).
+ Retighten the tapped stud (1).
+ Refit the main motor.
+ Carry out trial run.

Carry out trial run:
Operate motor for 15 minutes at 2000 rpm . The temperature should not exceed $45-50^{\circ} \mathrm{C}$.

With higher temperatures, the bearing is excessively pretensioned.

Chapter 13

Wiring diagrams, flow diagrams
Compact $5 \mathrm{CNC} / \mathrm{FI}$ CNC

COMPACT 5 CNC with New Software Package (CPU-A6C 114 003)

Summary

More G-Functions

More Memory and Computer Functions

Additionatrmentren isute

Ge

Flußdiagramm
Flow chart COMPACT 5 CNC

Spare parts list Compact 5 CNC and F1 CNC

Spare parts list Compact 5 CNC

EMCO Compact 5 CNC

EMCO Compact 5 CNC

EMCO Compact 5 CNC

EMCO Compact 5 CNC

Version ABC

Version FGH

EMCO Compact 5 CNC

E-Ausrüstung für Version
El. Equipment for Version \longrightarrow
Equipement el. pour version \longrightarrow

A,F	$\ldots .$.	$220 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, metr.	
B, G	\ldots	$220-240 \mathrm{~V}$,	$50 / 60 \mathrm{~Hz}$, metr.-inch
C, H	\ldots	$100-115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, metr.-inch	

B,G $\ldots .220-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, metr.-inch
C, H $\ldots \mathrm{I}^{2} 100-115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, metr.-inch

E-Ausrūstung fūr Sonderversion (Frankreich)
El. Equipment for special version (France)

Equipement el. pour version spéciale (France)

EMCO Compact 5 CNC

Sicherungen für Netzteilplatine Fuses for power supply circuit board Fusible pour platine bloc d'alimentation

A6A 111000
A6C 111000

| $\mathbf{e} 1$ | \ldots | .. | 8 | A | $\ldots .$. | ZEE | 75 | 1080 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{e} 2$ | \ldots | . | 8 | A | \ldots. | ZEE | 75 | 1080 |
| e3 | $\ldots .$. | 4 | A | \ldots. | ZEE | 75 | 1040 | |

Sicherungen für Netzteilplatine Fuses for power supply circuit board Fusible pour platine bloc d'alimentation

A6A 111001
A6C 111001


```
e1 ..... 4 A ..... ZEE 75 1040
e2 ..... 4 A ..... ZEE 75 1040
e3 ..... 6,3 A ... EEE 75 1063
e4 ..... 4 A ..... ZEE 75 1040
e6 ..... 1 A ..... ZEE 75 1010
e7 ..... 16 A .... ZEE 70 2016
```

Sicherungen für Hauptspindelplatine
A6A 112001
Fuses for main spindle circuit board
Fusibles pour platine d'alimentation broche

A6C 112001


```
e21 ..... lo A (ff, super fast, rapide) ..... ZEE 75 1101
```


Ref. Nr. für Schrittmotor und Kabel
Ref. No. for step motor and cable
Réf. pour moteur pas à pas et câble

Ref. Nr. für Kohlebürsten
Ref. No. for carbon brushes
Réf. pour balai de charbon

Pos	Ref. No.	DIN		Benennung	Description	Designation
	$260 \quad 040$			Werkzeugrevolver	Turret toolpost	Tourelle-revolver autom.
1	2SR 120620	M6x20 OIN 912-6.9		Zylinderschraube	Socket head screw	Vis 6 pans creux
2	A62 040020			Revolverscheibe	Toolpost disc	Disque de la tourelle
3	ZST 130616	M6x16 OIN 913-45H		Gewindestift	Set screw	Vis pointeau
4	2ST 130606	M6x6 DIN 913-45H		Gewindestift	Set screw	v is pointeau
5	ZWZ 110300	SW3 Din 911		Schraubendreher	Hex.socket screw key	Clê màle coudée
6	ZSR 630406	M4x6 OLN $963-4$		Senkschraube	Countersunk screw	Vis tête fraisėe
7	ZLG 600402	6004-2I		Rillenkugellager	Ball bearing	Roulement à billes
8	A6Z 040060			Schraubenrad	Horm wheel	Roue a vis sans fin
9	A6Z ata 120			Federplatte	Leaf spring	Ressort en feuillard plat
IJ	幵 213074			Druckfeder	Compression spring	Ressort de compression
II	A6Z 04a 190			Gewindestift	Set screw	Vis pointeau
12	75T 16 0608	M6x \times DIN 916-45H		Gewindestift	Set screw	Vis pointeau
13	ZBU 500015	Jlox 14×10 DiN1850		Sinterlager	Bearing bush	Bague
14	A6Z 040110			Buichse	Bush	Bague
15	A6Z 040160			Spannbolzen	Bolt	Boulon
16	A6Z 040170			Deckel	Cover	Couvercle
17	ZMU 340250	M2.5 DIN 934-5		Mutter	Nut	Ecrou
18	IPG 100012	M2B7		Kabelverschraubung	Screw-type cond.fittg.	Raccordement à vis
19	A62 046000			Motor komplett	Motor compl.	Ens. moteur
20	A62 040100			Mutter	Nut	Ecrou
21	2SB 026004	6004/K2		Ausgleichscheibe	Compensating washer	Rondelle de compensation
22	ZSR 120560	M5×60 DIN912-6.9		Zylinderschraube	Socket head screw	Vis 6 pans creux
23	2W2 110400	SW4 Din 911		Schraubendreher	Hex.socket screw key	Clè male coudee
24	POB 000160			Firmenschild	Name plate	Plaque
25	A62 040050			Schneckenwelle	Worm	V is sans fin
26	2LG 600002	6000-22		Rillenkugellager	Ball bearing	Roulement a billes
27	ZMU 800800	PM8 DIN 980-8		Sicherungsmutter	Securing nut	Ecrou de sürete
28	A62 040070			Ceckel	Cover	Couvercle
29	2SR 630408	M4×8 DIN 963-4.8		Senkschraude	Countersunk screw	Vis tête fraisee
30	A62 040040			Gehäuse	Housing	Corps
31	2FD 854416	A4×4×16 OIN 6885		Pabfeder	Square key	Clavette paralleile
32	$462040 \quad 030$			Schaltwelle	Shaft	Arbre
33	A62 040080			Dichtplatte	Seal plate	Joint d'etanchéitè

Pos.	Ref. No.	DIN:	Benennung	Description	Designation
1-6	544000		$\begin{aligned} & \text { Schnellwechselstahl - } \\ & \text { halter } \end{aligned}$	Quick-change toolpost	Tourelle porte-outil à changement rapide
1	ZME 110002		Feder	Clamp pad spring	Ressort
2	ZME 110001		Klemmplatte	Clamp pad	Plaque de serrage
3	ZME 110000		Exzenterbolzen	Clamp bolt	Boulon excentré
4	ZSR 120520	M4×20 DIN912	Zylinderschraube	Socket head screw	Vis 6 pans creux
5	ZME 110005		Mutter	Nut	Ecrou
6	ZSR 120516	M4×16 DIN912	Zylinderschraube	Socket head screw	Vis 6 pans creux
7	ZSR 121050	Mlox50 DIl:912-6.9	Zylinderschraube	Socket head screw	Vis 6 pans creux

Pos.	Ref. No.	DIN	Benennúng	Description	Designation
	260 010		Gruppe Plotter ${ }^{\text { }}$	Plotter complete	Ens. Plotter
1	A62 olo 010		Auflage	Table	Tableau
2	A62 010 030		Halter	Bar	Support
3	A62 010 050		Führung	Holder	Guidage
4	A62 olo 060		Leiste	Gib	Lardon
5	ZST 510404	M4×4 DIN551-5.8	Gewindestift	Set screw	Vis pointeau
6	ZHL 810308	3×8 DIN1481	Spannhuilse	Lock pin	Goupille de serrage
7	ZRG 711410	W14×1 DIN471	Sicherungsring	Retaining ring	Anneau de retenue
8	ZSR 640515	M 4×15	Rändelschraube	Knurled screw	V is moletēe
9	A62 010020		Bettwinkel	Basis element	Equerre
10	A62 010040	.	Achse	Axis	Axe
11	280067070	70×70	Papierrolle	Paper roll	Rouleau a papier
12	ZSR 630508	M5 $\times 8$ D1N963-4.8	Senkschraube	Countersunk screw	Vis tēte fraise
13	ZSR 120812	M8x12 DIN912-6.9	Zylinderschraube	Socket head screw	Vis 6 pans creux
14	7ST 991000				Crayon Plotter

Pos.	Ref. No.	DIN	Benennung	Description	Designation
	260310		Gruppe Plotter	Plotter complete	Ens. Platter
1	A62 011000		Auflage	Table	Tableau
2	A62 010 031		Halter	Bar	Support
3	A62 010050		Führung	Holder	Guidage
4	A62 alo 060		Leiste	Gib	Lardon
5	ZST 510404	M4×4 DiN 551-5.8	Gewindestift	Set screw	V is pointedu
6	2HL 810308	3×8 OIN 1481	Spannhiulse	Lock pin	Goupille de serrage
7	2RG 711410	W14x1 DiN 471	Sicherungsring	Retaining ring	Anneau de retenue
8	2SR 640515	M5× 15	Rändelschraube	Knurled screw	V is moletee
9	2SR 120516		Zylinderscnraube	Socket nead screw	Vis 6 pans creux
10	A62 010040		Achse	Axis	Axe
11	2RO 067070	70×70	Papierrolle	Paper roll	Rouleau a papier
12	7SR 120525		Zylinderschraube	Socket head screw	V is 6 pans creux
13	2SR 120812	M8x12 OLN 912-6.9	Zylinderschraube	Socket head screw	V is 6 pans creux
14	257991000		Plotterstift	Plotter pen	Crayon Plotter

Spare parts list F1 CNC

 1

EiMCO F1 CNC

Pos.	Ref. No.	DIN		Benennung	Description
1-18	F1A 020 000			Gr. Vertikalschlitten	Vertical slide compl.
1	F1A 020 040			Halteblech	Clamping sheet
2	ZSR 120525	. 15×25 DIN 912-6.9		Zylinderschraube	Socket head screw.
$3+4$	F1A 021001			Z-Spindel komplett	Z-spindle complete
4	2ST 510408	M4x8 DIN 551-5.8		Gewindestift	Set screw
5	F1A 020030			Schutzband	Protection strip
6	ZSR 120620	1.6×20 DIN 912-6.9		Zylinderschraube	Socket head screw
7	F1A 020 020			Vertikalschlitten	Vertical slide
8	F1A 020080			Abstreiffilz	Felt wiper
9	2SR 880610	M6x10-10.9		Linsenschraube	Filister head screw
10	F1A 020 090			mbstreifblech	Wiper plate
11	F1A 020010			Vertikalsäule	Vertical column
12	ZSB 120605	PS $6 \times 12 \times 0,5$ DIN988		Paßscheibe	Shim ring
13	F1A O20 050			Keilleiste kurz links	Taper gib short left
	FLA a 20060	-		Keilleiste lang links	Taper gib long left
14	FIA a2a 110		-	Keilleiste kurz rechts	Taper gib short right
	FLA O20 120			Keilleiste lang rechts	Taper gib long right
15	ZNP ol 2000	A2		Schmiernippel	Grease nipple
16	ZFD 024061	Do61		Druckfeder	Compression spring
17	ZNA 760204	2x4 DIN 1476-4.6		Kertanagel	Rivet
18	F1A 020 070	-		Stell schraube	Adjusting screw
19	ZRM 734805	MXL 48050		Zahnriemen	Timing belt
20	ZST 150640	M6x4o DIN 915-45H		Gewindestift	Set screw
21	ZMU 340600	M6 DIN 934-6		Sechskantmutter	Hexagonal nut
22	F1A 000350			Filzabstreifer	Felt wiper
23	F1A 000030			Dichtblech	Wiper plate
24	F1A 000170			Motorplatte Z	Motor plate \mathbf{Z}
25	ZSR 120612	M6x12 DIN 912-6.9		Zylin.Jerschraule	Socket head screw
26	ZSR 330408	M4x8 OIN 933-5.6		Sechskantschraube	Hexagon head screw
27	F1A 103000			Schrittmotor	Step motor
28	F1A 150000			Bremsband	Brake strap belt
29	ZFD 500037			Zug. adar	Tension spring
30	ZEF 951764			Funkentstörfilter	Interference filter

Pos.	Ref. No.	DIN		Benennung	Description
1-9	F1A 010000			Gruppe Fräskopf	Milling head comolete
1	ZST 160580	M5x8 DIIV 916-45H		Gewindestift	Set screw
2	F1A 010040			Ringmutter	Ring nut
3	F1A 010 030			Riemenscheibe	Pulley
4	ZLG 320076			Kegelrollenlager	Taper rolled bearing
5	B1A 030060			Decke 1	Cover
6	F1A 010010			Fräskopf	Milling head
7	ZFD 854418	A4×4×18 DIN 6885		Pabfeder	Square key
8	F1A 010020			Frässpindel	Milling spindle
9	ZST 070824	8m6x24 DIN 6325		Zylinderstift	Parallel pin
10	F1A 040000			Federeinheit	Belleville spring ass.
11	ZKG 001071	07		Kugel	Ball
12	F1A 000580			Frontplatte	Front plate
13	C4Z 030020			Nutenschraube	T-nut bolt
14	ZSB 250840	8,4 DIN 125		Scheibe	Washer
15	ZMU 330801	M8 DIN 934-10b1E		Mutter	Hexagonal nut
16	F1A 000410			Nabe	Hub
17	ZSB 121001	10x16x0, 1 DIN 988		Pabscheibe 0,1	Shim ring 0,1
	ZSB 121003	lox16x0, 3 DIN 988		Pabscheibe 0,3	Shim ring 0,3
18	F1A 000070			Exzenterbolzen	Eccentric bolt
19	F1A 000100			Schenkelfeder	Torsion spring
20	ZLG 781816			Nadellager	Needle roller bearing
21	ZGF 162108	21×M8 GN 519		Zylinderknopf	Cylindrical knob
22	F1A 000080			Stange	Toggle
23	ZSR 120635	M6x35 DIN 912-6.9		Zyl inderschraube	Socket head screw
24	ZST 720530			PaBkerbstift	Grooved pin
25	F1A 000400			Exzenterblock	Eccentric block
26	ZSR 120612	M6x12 OIN 912-6.9		Zyl inderschraube	Socket head screw
27	F1A 000050			Motorplatte	Motor plate
28	2SR 790512	M5x12 DIN 7991-8.8		Senkschrause	Countersunk screw
29	F1A 000420			Abdeckhaube	Cover
30	ZSR 880610	M6x10 10.9		Linsenschraube	Filister head screw
31	ZSR 120520	M5 x20 DIN 912-8.8		Zyl inderschraube	Socket head screw
32	ZRG 280050	B5 DIN 127		Federring	Spring ring
33	FIA 000120			Bords cheibe	Washer
34	F1A 000110			Motorriemenscheibe	Motor pulley
35	F1A 000130			Anlaufscheibe	Washer
36	Z FO O 781445	220.-240 V		Motor	Motor
	ZMO 781446	100-120 V		Motor	Motor
37	ZME 200290			Kohlebürste	Carbon brush
38	ZLT 500120			Schlauchverschraubung	Screw-type conduit fitting
39	2LT 990001	FPS 13×17		PVC-Schlauch	Flexible conduit
40	ZRM 513110	110 XL 075		Zahnriemen	Timing belt

$\left.\square^{4}\right]^{46}$
पixnmos 45

Pos.	Ref. No.	DIN	Benennung	Description
	$770 \quad 300$		Plotter F1	Plotter F1
1	F12 300010		Aufnahriedorn	Arbor
2	ZOR o2 3324	OR 23,3-2,4	O-Ring	0-Ring
3	F1E 300030		Einstelliring	Adjusting ring
4	ZST 150412	M4×12 DIN $915-45 \mathrm{H}$	Gewindestift	Set screw
5	F12 300020		Exzenterhülse	Eccentric sleeve
6	ZST 130408	M4×8 DIN 913-45H	Gewindestift	Set screw
7	ZWZ 110200	SW2 DIN 911	6-Kant Schraubendreher	Hexagonal key
8	ZST 991000		Faserstift	Plotter pen
9	IXM 002008	- 20×8	Hal temagnet	Magnetic disc
10	F12 301000		Aufspannplatte	Clamping plate

EMCO F1 CNC

Pos.	Ref. No.	DIN	Benennung	Description
	346510		G.Supportflansch	Cross slide adaptor compl.
1	B4Z 250010		Supportilansch	Cross slide adaptor
2	C3Z 030040		Nutenschraube M8	T-Bolt M8
3	B4Z 170020		Nutenschraube M6	T-Bolt M6
4	ZS8 250640	B6.4 DIN 125	Scheibe	Washer
5	ZSB 250840	B8,4 DIN 125	Schéibe	Washer
6	ZMU 340600	M6 DIN 9346	Sechskantmutter	Hexagon nut
7	ZMU 340800	M8 DIN 9346	Sechskantmutter	Hexagon nut

Pos.	Ref. Nr.	DIN		Benennung	Description
	745510			G.Zwischenflansch	Adaptor plate compl.
1	84Z 170010				
2	B4Z 170020			Zwischenflansch	Adaptor plate
3	ZSB 25 0649	B64 DIN 125		Nutenschraube	T-bolt
4	ZMU 34 0600	M6 DIN 934-6		Scheibe	Washer

Pos.	Ref. No.	DIN	Benennung	Description
	770310		Maschinenschraubstock	Machine vice
1	ZMU 340600	M6 DIN 934-6	Sechskantmutter	Hexagonal nut
2	ZMU 340800	M8 OIN 934-6	Sechskantmutter	Hexagonal nut
3	ZSB 250840	8,4 DIN 125	Scheibe	Washer
4	ZST 170515	M5x15 OIN 417-5.8	Gewindestift	Set screw
5	ZSR 840512	M5x12 OIN 84-4.8	Zylinderschraube	Flat head screw
6	B2Z 310050		Aufsatzbacke	Jaw
7	B22 310080	SW10	Schlüsel	Key
8	ZSR 330640	M6x40 DIN 933-5.6	Sechskantschraube	Hexagon head bolt
9	ZSR 330612	M6x12 OIN 933-5.6	Sechskantschraube	Hexagon head screw
10	F12 310030		Anschlagplatte	Stop plate
11	F12 310010		Körper	Body
12	F12 310020		Nutenschraube	T-bolt
13	B22 310020		Backe	Moving jaw
14	B22 310 060		Einstelleiste	Adjusting gib
15	B22 310 040		Spindel	Operating screw
16	2NP ol 1000		Schmiernippel	Grease nipple
17	B 22310030		Spindelträger	Screw mount
18	ZSR 12 ob25	M8x25 DIN 912-8.8	Zylinderschraube	Socket head screw

4-BACKEN-FUTTER, SELBSTZENTRIEREND 4-JAW-CHUCK, SELF-CENTERING MANDRIN À 4 MORS, SERRAGE CONCENTRIQUE

* Am Aupenring dee zahnkranzen iat eine Ziffer ($0,1,2,3 \ldots$) eingraviert Bei Beatellung zuaxtslich sur Bestellnumer diese Ziffer angebea.
* On the outalde ting of the scroll a number ($0,1,2$ or 3) is engraved. Please batete this number also when ordering a scroll.
* Sur l'anncau extérleur de la couronne dentée est gravé un chiffre (o,1,2 ou 3). Prière d'indlquer en plut ce chiffre ensemble avec le numéro de référence.

3-BACKEN-FUTTER, SELBSTZENTRIEREND 3-JAW-CHUCK, SELF-CENTERING MANDRIN À 3 MORS, SERRAGE CONCENTRIQUE

* Am Ausenting des Zahnkranzes ist eine Ziffer ($0,1,2,3 \ldots$) eingraviert. Bel Bestallung zusatzlich zur Bestellaumer diese Ziffer angeben.
* On the outside ring of the scroll a number ($0,1,2$ or 3) is engraved Please state this number also when ordering a scroll.
* Sur l'anneau extérieur de la couronne dentée est gravé un chiffre ($0,1,2$ ou 3). Prière d'indiquer en plus ce chiffre enscmble avec le numero de reference.

PLANSCHEIBE MIT 4 BACKEN 4-JAW INDEPENDEND CHUCK PLATEAU DE TOUR À 4 MORS

(mm)	Satz von 4 Unkehrbacken Set of 4 reversible jaws ceu mors revers. A immil Ref. No.		Spindel Spindle $\begin{aligned} & \text { Broche } \\ & \text { B } \\ & (\mathrm{mm} \mid \end{aligned} \text { Ref. No. }$		cel Gabel Boll Axe a c (mm)	boizen couble fourche Ref No		ussel (Wrench) Ref. No.
(${ }^{6} 152 \mathrm{~mm}$	51	PIE 004	48	POE 000	18	PIE 000150	9	POE 001000

$\frac{\text { Hauptmotor }}{\text { Main motor }}$

Vorschubspindel
Spindles feed

220-240 V: ZMO 781445
100-115 V: ZмО 781446
$\mathrm{X}: \mathrm{FlA} 031001$
Y : F1A 032 001
Z : F1A 021001
X, Y, Z beziehen sich auf vertikales Achssystem
X, Y, Z in vertical axis system
$\begin{array}{llll}X & : & F 1 A & 103000 \\ Y & : & F 1 A & 103000 \\ Z & : & F 1 A & 103000\end{array}$

e21
10A ff
ZEE 750021 superfast e 22

0,1A
ZEE 750015

el
4A
ZEE 750011

Messpunkte
 Compact 5CNC/F1CNC

MP5

MP9

MP $3 L$
MP22-MP 26

MPII

MP 4 PIN9/10
MP 7 PIN7/8
MP12 PIN5/6 MP13 PIN4/6
MP4 $\operatorname{PIN} 216$ MP42 PIN19/18
MP43 PINIS/17
MP44 PIN16/1
MP45 PIN13/15

[^0]: Making mounting easier: Plug in connections before mounting the turret circuit board itself.

